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CHAPTER 1: INTRODUCTION 
Short Answer Problems 

1.1 True: The earth is taken to be non-accelerating for purposes of modeling systems on 
the surface of the earth. 

1.2 False: Systems undergoing mechanical vibrations are not subject to nuclear reactions is 
an example of an implicit assumption. 

1.3 True: Basic laws of nature can only be observed and postulated. 

1.4 False: The point of application of surface forces is on the surface of the body. 

1.5 False: The number of degree of freedom necessary to model a mechanical system is 
unique. 

1.6 False: Distributed parameter systems are another name for continuous systems. 

1.7 True: The Buckingham Pi theorem states that the number of dimensionless variables 
required in the formulation of a dimensional relationship is the number of dimensional 
variables, including the dependent variable, minus the number of dimensions involved in 
the dimensional variables. 

1.8 True: The displacement of its mass center (x and y coordinates) and the rotation about 
an axis perpendicular to the mass center are degrees of freedom the motion of an 
unconstrained rigid body undergoing planar motion. 

1.9 False: A particle traveling in a circular path has a velocity which is tangent to the 
circle. 

1.10 False: The principle of work and energy is derived from Newton’s second law by 
integrating the dot product of the law with a differential displacement vector as the particle 
moves from one location to another. 

1.11 The continuum assumption treats all matter as a continuous material and implies that 
properties are continuous functions of the coordinates used in modeling the system. 

1.12 An explicit assumption must be stated every time it is used, whereas an implicit 
assumption is taken for granted. 

1.13 Constitutive equations are used to model the stress-strain relationships in materials. 
They are used in vibrations to model the force-displacement relationships in materials that 
behave as a spring. 

1.14 A FBD is a diagram of a body abstracted from its surroundings and showing the 
effects of the surroundings as forces. They are drawn at an arbitrary time. 
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1.15 The equation represents simple harmonic motion 

1.16 (a) X is the amplitude of motion; (b)  is the frequency at which the motion occurs 
(c)  is the phase between the motion and a pure sinusoid. 

1.17 The phase angle is positive for simply harmonic motion. Thus the response lags a 
pure sinusoid. 

1.18 A particle has mass that is concentrated at a point. A rigid body has a distribution of 
mass about the mass center. 

1.19 A rigid body undergoes planar motion if (1) the path of its mass center lies in a plane 
and (2) rotation occurs only about an axis perpendicular to the plane of motion of the mass 
center. 

1.20 The acceleration of a particle traveling in a circular path has a tangential component 
that is the radius of the circle times the angular acceleration of the particle and a centripetal 
acceleration which is directed toward the center of the circle which is the radius time the 
square of the angular velocity. 

1.21 An observer fixed at A observes, instantaneously that particle B is moving in a 
circular path of radius /  about A. 

1.22 It is applied to the FBD of the particle. 

1.23 The effective forces for a rigid body undergoing planar motion are a force applied at 
the mass center equal to   and a moment equal to . 

1.24 The two terms of the kinetic energy of a rigid body undergoing planar motion are 
 , the translational kinetic energy, and  , the rotational kinetic energy. 

1.25 The principle of impulse and momentum states that a body’s momentum (linear or 
angular) momentum at   plus the external impulses applied to the body (linear or angular) 
between  and   is equal to the system’s momentum (linear or angular) at   .      

1.26 One, let  be the angular rotation of the bar, measured positive counterclockwise, 
from the system’s equilibrium position. 

1.27 Four, let  be the absolute displacement of the cart,   the displacement of the 
leftmost block relative to the cart,   the displacement of the rightmost block away from 
the cart and  the counterclockwise angular rotation of the bar. 

1.28 Four, let  represent the displacement of the center of the disk to the right,  the 
downward displacement of the hanging mass,  the displacement of the sliding mass to 
the left and  the counterclockwise angular rotation of the rightmost pulley.        
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1.29 Two, let   be clockwise the angular displacement of the bar and x the downward 
displacement of the hanging mass. 

1.30 Three, let x be the downward displacement of the middle of the upper bar,  its 
clockwise angular rotation and  the clockwise angular rotation of the lower bar. 

1.31 Three, let  represent the clockwise angular rotation of the leftmost disk,  the 
clockwise angular rotation of the rightmost disk and x the upward displacement of the 
leftmost hanging mass. 

1.32 Infinite, let x be a coordinate measured along the neutral axis of the beam measured 
for the fixed support. Then the displacement is a continuous function of x and t, w(x,t). 

1.33 Three, let  be the downward displacement of the hand,  the downward 
displacement of the palm and  the displacement of the fingers. 

1.34 Given: Uniform acceleration, a=2 m/s. (a)    5 2 5 s

0 10 m     (b)  5 2 5 s 25 m              

1.35 Given: 2 cos 2 3 sin 2 0.4  m/s. (a) 4 sin 2  
6 cos 2   m/s  4 sin 2  6 cos 2  6  m/s   (b) 

sin 2  cos 2 0.4  m. The particle starts at the origin 

at t = 0. Application of this condition leads to) t sin 2  cos 2
0.4  m. Evaluation at  leads to π sin2  −32cos2 32 0.4  m =0.4  m. 

1.36 Given: v=2 m/s, r=3 m, 0 0 (a) 2  at t=2 s the particle 

has traveled 4 m. But  thus  
 

1.33 rad 76.2°. (b) The acceleration of a 

particle traveling on a circular path has two components. One is  which is tangent to the 

circle and is zero for this problem. The other component is  /
 

1.33 m directed 
toward the center of the circle from the position of the particle. 

1.37 Given: m=2 kg, 0.5 kg · m  , 5 3  m/s , 10 rad/s . Effective 
forces are 2 kg 5 3 10 15  applied at the mass center and a 
couple 0.5 kg · m 10 rad/s 5 N · m. 

1.38 Given: m = 0.1 kg, 9 11j  m/s. The kinetic energy of the particle is 
| | 0.1 kg √9 11  / 0.711 J. 
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1.39 Given: m=3 kg, 3 4  m/s, d=0.2 m The angular velocity is calculated from 
| | | |=  /

.  
=20 rad/s. 

1.40 Given: 100 J , 0.03 kg · m  The kinetic energy of a rigid body which rotates 
about its centroidal axis is . Thus 100 J 0.03 kg · m  which leads to 

81.65 . 

1.41 Given: m = 5 kg, 4 m/s, 20 rad/s, 0.08 kg · m . The kinetic energy of 
a rigid body undergoing planar motion is 5 kg 4 m/s

0.08 kg · m 20 rad/s 56 J. 

1.42 Given: F=12,000 N, ∆ 0.03 s. The impulse applied to the system is ∆
12,000 N 0.03 s 360 N · s. 

1.43 Given: m = 3 kg, 0 m/s, force as given in Figure  (a) The impulse imparted to 
the particle is  1 100 2 100 1 100 300 N · s (b) The 

velocity at t=2 s is given by the principle of impulse and momentum  

 
 N·

 
83.3 m/s. (c) The velocity after 5 s is 

 
 N·

 
100 m/s. 

1.44 Given: m = 2 kg, F=6 N, t=10 s, 4 m/s. The principle of work and energy is 
used to calculate how far the particle travels  after the velocity is 
calculated from the principle of impulse and momentum 

  /  N  
 

34 m/s. Then letting x be the distance traveled 

application of work and energy gives 2 kg 4 m/s 6 N 2 kg 34 m/
s2which is solved to yield x=190 m. 

1.45 (a) -(ii)  (b)-(iv)  (c)-(i)  (d)-(v)  (e)-(i)  (f)-(v)  (g)-(vi)  (h)-(iii)  (i)-(ix)  
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Chapter Problems 

1.1 The one-dimensional displacement of a particle is  

0.5 . sin 5  m 

(a) What is the maximum displacement of the particle? (b) What is the maximum velocity 
of the particle? (c) What is the maximum acceleration of the particle? 

Given: x(t) 

Find:    

Solution: (a) The maximum displacement occurs when the velocity is zero. Thus 

0.5 . 0.2 sin 5 5 cos 5  

Setting the velocity to zero leads to 

0.2 sin 5 5 cos 5 0 

or tan 5 25 . The first time that the solution is zero is t=0.3062. Substituting this value 
of t into the expression for x(t) leads to 

0.4699 m 

(b) The maximum velocity occurs when the acceleration is zero 
0.5 . 0.2 0.2 sin 5 5 cos 5 cos 5 25 sin 5

0.5 . 24.96 sin 5 6 cos 5  
The acceleration is zero when 24.96 sin 5 6 cos 5 0 tan 5 0.240. 
The first time that this is zero is t=0.5812 which leads to a velocity of  

2.185 m/s 
(c) The maximum acceleration occurs when 0, 

0.5 . 0.2 24.96 sin 5 6 cos 5 24.96 5 cos 5 30 sin 5
0.5 . 34.992 sin 5 123.6 cos 5  

The maximum acceleration occurs when 34.992 sin 5 123.6 cos 5 0
tan 5 3.53. The time at which the maximum acceleration occurs is t=0.2589 s 
which leads to  

12.18 m/s  

Problem 1.1 illustrates the relationships between displacement, velocity and acceleration. 
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1.2 The one-dimensional displacement of a particle is 

 msin.0   0.24)+(5te0.5=x(t) 2t-  (1) 

(a) What is the maximum displacement of the particle? (b) What is the maximum velocity of 
the particle? (c) What is the maximum acceleration of the particle? 

Given: x(t) 

Find:    

Solution: (a) The maximum displacement occurs when the velocity is zero. Thus 

0.5 . 0.2 sin 5 0.24 5 cos 5 0.24  

Setting the velocity to zero leads to 

0.2 sin 5 0.24 5 cos 5 0.24 0 

or tan 5 0.24 0.2582. The first time that the solution is zero is t=0.3062. 
Substituting this value of t into the expression for x(t) leads to 

0.4745 m 

(b) The maximum velocity occurs when the acceleration is zero 
0.5 . 0.2 0.2 sin 5 0.24 5 cos 5 0.24

cos 5 0.24 25 sin 5 0.24
0.5 . 24.96 sin 5 0.24 6 cos 5 0.24  

The acceleration is zero when 
 24.96 sin 5 0.24 6 cos 5 0.24 0 tan 5 0.24 0.240. 
The first time that this is zero is t = 0.5332 which leads to a velocity of  

2.0188 m/s 
(c) The maximum acceleration occurs when 0, 

0.5 . 0.2 24.96 sin 5 0.24 6 cos 5 0.24
24.96 5 cos 5 0.24 30 sin 5 0.24

0.5 . 34.992 sin 5 0.24 123.6 cos 5 0.24  
The maximum acceleration occurs when 
 34.992 sin 5 0.24 123.6 cos 5 0.24 0 tan 5 0.24 3.53. 
The time at which the maximum acceleration occurs is t=0.2109 s which leads to  

12.30 m/s  

Problem 1.2 illustrates the relationships between displacement, velocity and acceleration. 
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42m/sec

75m/sec

2

2

1.3 At the instant shown in Figure P1.3, the slender 
rod has a clockwise angular velocity of 5 rad/sec and a 
counterclockwise angular acceleration of 14 rad/sec2. 
At the instant shown, determine (a) the velocity of 
point P and (b) the acceleration of point P. 

 

Given: ω = 5 rad/sec, α = 14 rad/sec2, θ = 10° 

Find: , aP 

Solution: The particle at the pin support, call it O, is fixed. Hence its velocity and acceleration 
are zero. Using the relative velocity and acceleration equations between two particles on a 
rigid body 

/ 5 3 cos 10° 3 sin 10°  15 sin 10° 15 cos 10°   
2.604 14.772  

and  
 OPOPOP +)(+= // αxrωxrxωaa   

s
m 9.85

s
m

2

2

=P

P   )54.3+(-66.5=

a

jia
 

Alternate solution: The bar is rotating about a fixed point. Thus any point on the bar moves on 
a circular arc about the point of support. The particle P has two components of acceleration, 
one directed between P and O (the normal acceleration), and one tangent to the path of P 
whose direction is determined using the right hand rule (the tangential component).  
 
The component normal to the path of P is 

 
s
m

s
rad5m 275=)(3=a 2

n  

and is directed between P and O. The tangential acceleration is 

 
s
m

s
radm 22 42=))(14(3=at  

The normal and tangential components of acceleration are illustrated on the diagram below. 
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Problem 1.3 illustrates the use of the relative acceleration equation of rigid body kinetics. 
 
1.4 At t = 0, a particle of mass 1.2 kg is traveling with a speed of 10 m/s that is increasing 
at a rate of 0.5 m/s2. The local radius of curvature at this instant is 50 m. After the particle 
travels 100 m, the radius of curvature of the particle's path is 50 m. 

(a) What is the speed of the particle after it travels 100 m? 
(b) What is the magnitude of the particle’s acceleration after it travels 100 m? 
(c) How long does it take the particle to travel 100 m? 
(d) What is the external force acting on the particle after it travels 100 m? 
 
 
Given: m = 1.2 kg, v(t=0) = 10 m/s, dv/dt= 0.5 m/s2, and r = 25 m when s = 100 m 
Find: (a) v when s = 100 m, (b) a when s = 3 m, (c) t when s = 3 m 

Solution: Let s(t) be the displacement of the particle, measured from t = 0. The particle’s 
velocity is  

∫∫ +==+=
t

t
tdtvdt

dt
dvtv

0
0

105.0 5.0)0( )(  

By definition v=ds/dt. Thus the displacement of the particle is obtained as 

( )∫ ∫ +=+=+=
t t

ttdttsdtvts
0 0

2 1025.0 105.0)0( )(  

When s = 100 m, 

s 28.8 1025.0m 100 2 =⇒+= ttt  

(a) The velocity when s = 100 m is 
m/s 14.1410)28.8(5.0 =+=v  

(b) Since the particle is traveling along a curved path, its acceleration has two components: 
a tangential component equal to the rate of change of the velocity 

2m/s 5.0==
dt
dvat  

and a normal component directed toward the center of curvature 

2
22

m/s 00.4
m50

)m/s 14.14(
===

r
van  

The magnitude of the acceleration at this instant is 
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2

222222

m/s 03.4a

)m/s 00.4()m/s 5.0(a

=

+=+= nt aa
 

(c) The time for the particle to travel 100 m is previously calculated as  t = 8.28 s 
(d)  The external force equation written in terms of magnitudes is  

| | | | 
which upon application to the particle gives 

| | 1.2 kg 4.03 
m
s 4.84 N 

 
Problem 1.4 illustrates the kinematics of a particle traveling along a curved path. 

 

1.5 The machine of Figure P1.15 has a vertical displacement, 
x(t). The machine has component which rotates with a constant 
angular speed, ω. The center of mass of the rotating component 
is a distance e from its axis of rotation. The center of mass of the 
rotating component is as shown at t = 0. Determine the vertical 
component of the acceleration of the rotating component. 
 
 
Given: e, ω,  x (t) 

Find: ay 

Solution: The particle of interest is on a component that moves 
relative to the machine. From the relative acceleration equation, 

  MGMG aaa +=  

where 

  ( ) ja txM &&−=  

and 

  ( )jia θθω sincos2 −−= eMG  

Since the angular velocity of the rotating component is constant and θ = 0 when t = 0, 

  tωθ =  

Hence the vertical acceleration of the center of mass of the rotating component is 
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  ( ) tetxa 2
y ωω sin−−= &&  

Problem 1.5 illustrates application of the relative acceleration equation. Vibrations of 
machines subject to a rotating unbalance are considered in Chapter 4. 

 

1.6 The rotor of Figure P1.6 consists of a disk mounted 
on a shaft. Unfortunately, the disk is unbalanced, and 
the center of mass is a distance e from the center of the 
shaft. As the disk rotates, this causes a phenomena 
called “whirl”, where the disk bows. Let r be the 
instantaneous distance from the center of the shaft to 
the original axis of the shaft and  be the angle made 
by a given radius with the horizontal. Determine the 
acceleration of the mass center of the disk. 

Given: e, r 

Find:  

Solution: The position vector from the origin to the center of the disk is  where r varies 
with time. The mass center moves in a circular path about the center of the disk. The 
relative acceleration equation gives 

2  

2  

The acceleration of the mass center is then  

2 cos sin  

Problem 1.6 illustrates application of the relative acceleration equation. 

 

1.7 A 2 ton truck is traveling down an 
icy, 10º hill at 50 mph when the driver 
sees a car stalled at the bottom of the 
hill 250 ft away. As soon as he sees the 
stalled car, the driver applies his brakes, 
but due to the icy conditions, a braking 
force of only 2000 N is generated. Does 
the truck stop before hitting the car? 

Given: W = 4000 lb., θ = 10o, d = 250 ft., Fb = 2000 N = 449.6 lb,  
vo = 50 mph = 73.33 ft/sec 

10º
250 ft
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N

=

W

W
g

a

Fb

EXTERNAL FORCES EFFECTIVE FORCES

Find: v = 0 before x = 250 ft. 

Solution: Application of Newton’s Law to the free body diagram of the truck at an 
arbitrary instant 

( ) ( )

2

0
2

..

sec
ft973.1

10sin
lb4000
lb 449.6

sec
ft2.32

sin

sin

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

⎟
⎠
⎞

⎜
⎝
⎛ +−=

=+−

= ∑∑

a

a

W
Fga

a
g

WWF

FF

b

b

effxextx

θ

θ

 

Since the acceleration is constant, the velocity and displacement of the truck are 

 
tttvtax

tvatv

33.73986.0
2

33.73973.1

2
0

2
0

+=+=

+=+=
 

The acceleration is positive thus the vehicle speeds up as it travels down the incline. The 
truck does not stop before hitting the car.  

Problem 1.7 illustrates application of Newton’s Law to a particle and kinematics of 
constant acceleration. 

 

1.8 The contour of a bumpy road is approximated by y(x) = 0.03 sin(0.125x) m. What is the 
amplitude of the vertical acceleration of the wheels of an automobile as it travels over this 
road at a constant horizontal speed of 40 m/s? 
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Given: y(x) = 0.03sin(0.125x) m, v = 40 m/s 

Find: A 

Solution: Since the vehicle is traveling at a constant horizontal speed its horizontal distance 
traveled in a time t is x = vt. Thus the vertical displacement of the vehicle is 

[ ] m )5sin(03.0)40(125.0sin03.0)( ttty ==  

The vertical velocity and acceleration of the vehicle are calculated as  

2m/s )5sin(75.0)5sin()5(15.0)(
m/s )5cos(15.0)5cos()5(03.0)(
ttta

tttv
−=−=

==
 

Thus the amplitude of acceleration is A=0.75 m/s2. 

Problem 1.8 illustrates the relationship between displacement, velocity, and acceleration 
for the motion of a particle. 

 

1.9 The helicopter of Figure P1.9 has a horizontal speed of 110 ft/s and a horizontal 
acceleration of 3.1 ft/s2. The main blades rotate at a constant speed of 135 rpm. At the 
instant shown, determine the velocity and acceleration of particle A. 

Given: vh = 110 ft/s, ah=3ft/s2, ω = 135 rpm = 14.1 rad/s, r = 2.1 ft 

Find: vA, aA 

Solution: Construct a x-y coordinate system in the horizontal plane 

As illustrated. Using this coordinate system 

2ft/s 3  ft/s, 110 iaiv −=−=  

The position vector of A relative to the helicopter at this instant is 

[ ] jijir hA 48.148.1)4/sin()4/cos(/ −=−= ππr  

The relative velocity equation is used to determine the velocity of particle A as 

ft/s 9.201.89
)48.148.1(1.14110

/

jiv
jikiv

rkvv

A

A

hAhA

+−=
−×+−=

×+= ω

 

The relative acceleration equation is used to determine the acceleration of particle A as 
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2

//

ft/s 6.2944.297

)87.2087.20(1.141.3
)(

jia

jikia
rkkrkaa

A

A

hAhAhA

+−=

+×+−=
××+×+= ωωα

 

Problem 1.9 illustrates the use of the relative velocity and relative acceleration equations. 

 

1.10 For the system shown in Figure P1.10, 
the angular displacement of the thin disk is 
given by 0.03 sin 30  rad. The 
disk rolls without slipping on the surface. 
Determine the following as functions of time. 
(a) The acceleration of the center of the disk. 
(b) The acceleration of the point of contact 
between the disk and the surface. (c) The 
angular acceleration of the bar. (d) The 
vertical displacement of the block. (Hint: 
Assume small angular oscillations  of the 
bar. Then sin  .) 

 

Given: , 0.1 m, ℓ 0.3 m, 0.2 m 

Find: (a)  (b)  (c)  (d) x 

Solution: (a) The angular acceleration of the disk is 

30 0.03 sin 30
4

27 sin 30
4

 
rad
s

 

Since the disk rolls without slip the acceleration of the mass center is 

0.1 m 27 sin 30
4

 
rad
s

2.7 sin 30
4

 
m
s
 

(b) Since the disk rolls without slip the horizontal acceleration of the point of contact is 
zero. The vertical acceleration is  towards the center  

0.1 m 30 0.03 cos 30
4

 
rad

s
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0.081 cos 30
4

 
m
s

  

(c) Assuming small  the angular displacement of the link is ℓ  or  

ℓ
=

.  

.  
 

9 sin 30
4

 
r

s
 

(d) The displacement of the mass center of the block is  or 

0.2 
9

30
sin 30

4
2 sin 30

4
  mm 

Problem 1.10 illustrates angular acceleration and acceleration of a body rolling without 
slip. 

 

1.11 The velocity of the block of the system 
of Figure P1.11 is 0.02 sin 20 m/s 
downward. (a) What is the clockwise 
angular displacement of the pulley? (b) What 
is the displacement of the cart? 

                                                       

Given: , 0.1 m, 0.3 m 

Find: (a)  (b)  

Solution: the displacement of the block is 

0.001 1 cos 20  m 

(a) The angular displacement of the pulley is  

0.001 1 cos 20  m m
0.3 m

3.33 10 1 cos 20  rad 

(b) The displacement of the cart is  

0.1 
0.3 

0.001 1 cos 20  m 3.33 10 1 cos 20  m 

 

Problem 1.11 illustrates velocity and kinematics. 
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1.12 A 60-lb block is connected by an inextensible cable through the pulley to the fixed 
surface, as shown in Figure P1.12. A 40-lb weight is attached to the pulley, which is free to 
move vertically. A force of magnitude P = 100(1+ e-t) lb 
tows the block. The system is released from rest at t = 0. 

(a) What is the acceleration of the 60 lb block as a 
function of time? 

(b) How far does the block travel up the incline before it 
reaches a velocity of 2 ft/sec? 

Given: W1 = 60 lbs, W2 = 40 lbs, P = 100(1+e-t) lb,  μ = 
0.3,  θ  = 45º 

Find:  a(t),  x(v = 2 ft/sec) 

Solution: Let x be the distance the block travels from t = 
0. Let y be the vertical distance traveled by the pulley 
from t = 0. The total length of the cable connecting the 
block, the pulley and the surface is constant as the block 
moves up the incline. Thus, referring to the diagrams 
below. At t = 0, l = a + b + c.  At an arbitrary time, l = a 
+ x + b – y + c – y = a + b + c + x – 2y. Hence y = x/2. 

 

     

 

Free body diagrams of the blocks are shown at an arbitrary instant of time. 

 

c

a

w

w

b

t=0

2

1

c-y

a+x

w

w

ARBITRARY TIME

b-y

2

1
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w
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T

w

N

F

P

w

w

y

::
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x

=

=

g

g

1

2
2

1

EXTERNAL FORCES EFFECTIVE FORCES  

 

From the free body diagrams of the pulley 

 

( ) ( )

( )gy
2

mT

ymgmT2

FF

2

22

effext

+=

=−

= ∑∑

&&

&&

..

  (1) 

Summation of forces in the direction normal to the incline for the block yields  

 θcosgmN 1=  (2) 

Summing forces in the direction along the incline on the block 

 
( ) ( )

xmgmFPT

FF

11

effext

&&=−−+−

= ∑∑
θsin

..  (3) 

Noting that  F = μN  and using eqs. (1) and (2) in eq. (3) gives 

 

4
mm

gmgmP
2

gm

x
2

1

11
2

+

−−+−
=

θθμ sincos
&&  (4) 

Substituting given values leads to 

  2s
ft0.4642.11 tex −+=&&  

The velocity is calculated from 
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( )
t

t
t

v

etv

dtedv

−

−

−+=

+= ∫∫
0.4642.110.46

9.4642.11
00

                                                     

 (5) 

Setting v = 2ft/sec in eq. (5) and solving the resulting equation for t by trial and error 
reveals that it takes 0.0354 sec for the velocity to reach 2 ft/sec. The displacement from the 
initial position is calculated from 

 
( )

( ) t

t
t

x

etttx

dtetdx

−

−

+++−=

−+= ∫∫
0.4671.50.460.46

0.4642.110.46

2
00                                           (6) 

Setting t = 0.0354 sec in eq.(6), leads to 

  tx f0356.0=  

Problem 1.12 illustrates the application of Newton’s Law to a particle, the kinematics of 
pulley systems, and relationships between acceleration, velocity, and displacement. Note 
that the time required to attain a velocity of 2 ft/sec could have been attained using impulse 
and momentum. 

 

1.13 Repeat Problem 1.12 for a force of P = 100t N.  

 

Given: W1  = 60 lbs, W2  = 40 lbs, P = 100t lbs, μ = 0.3, θ  = 
45º 

Find:  a(t),  x(v = 2 ft/sec) 

Solution: Let x be the distance the block travels from t = 0. 
Let y be the vertical distance traveled by the pulley from t = 
0.  The total length of the cable connecting the block, the 
pulley and the surface is constant as the block moves up the 
incline. Thus, referring to the diagrams below. At t = 0, l = 
a + b + c.  At an arbitrary time, l = a + x + b – y + c – y = a 
+ b + c + x – 2y. Hence y = x/2. 

ftx 98.22=
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c-y

a+x

w

w

b-y

2

1

 

Free body diagrams of the blocks are shown at an arbitrary instant of time. 

 
w

T T

T

w

N

F

P

w

w

y

::

::

x

=

=

g

g

1

2
2

1

EXTERNAL FORCES EFFECTIVE FORCES  

 
From the free body diagrams of the pulley 

 

( ) ( )

( )gy
2

mT

ymgmT2

FF

2

22

effext

+=

=−

= ∑∑

&&

&&

..

 (1) 

Summation of forces in the direction normal to the incline for the block yields 

 θcosgmN 1=   (2) 

Summing forces in the direction along the incline on the block 

 
( ) ( )

xmgmFPT

FF

11

effext

&&=−−+−

= ∑∑
θsin

..  (3) 

Noting that F = μN and using eqs.(1) and (2) in eq.(3) gives 

c

a

w

w

b

t=0

2

1
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θ

θ φ

φ

r

+rcos l

l  

cos

 

4
mm

gmgmP
2

gm

x
2

1

11
2

+

−−+−
=

θθμ sincos
&&  (4) 

Substituting given values leads to 

 57.3479.36 −= tx&&  

Note that the acceleration is initially negative, then becomes positive.  

 
( )

ttv

dttdv
t

o

v

o

57.3440.18

57.3479.36

2 −=

−=∫∫  (5) 

Setting v = 2 ft/sec in eq.(5) and solving the resulting quadratic equation reveals that it 
takes 2.07 sec for the velocity to reach 2 ft/sec. The displacement from the initial position 
is calculated from 

 ( )dtttdx
t

o

x

o
∫∫ −= 57.344.18 2  (6) 

 
ft76.19sec)07.2(

28.1713.6)( 23

−=
−=

x
tttx

 

Problem 1.13 illustrates the application of Newton’s Law to a particle, the kinematics of 
pulley systems, and relationships between acceleration, velocity, and displacement. Note 
that the time required to attain a velocity of 2 ft/sec could have been attained using impulse 
and momentum. 

 

1.14 Figure P1.14 shows a schematic diagram of a one-cylinder 
reciprocating one-cylinder engine. If at the instant time shown the 
piston has a velocity v and an acceleration a, determine (a) the 
angular velocity of the crank and 
(b) the angular acceleration of the 
crank in terms of v, a, the crank 
radius r, the connecting rod 
length ℓ, and the crank angle θ.  

 
Given: r, l , θ , v, a 

Find: αAB 
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Solution:  (a) From the law of sines 

 
θφ sinsin
l

=
r

   

or 

 θφ sinsin
l

r
=         (1) 

 
Then from trigonometry 

 
2

2

r1

1

⎟
⎠
⎞

⎜
⎝
⎛−=

−=

θ

φφ

sin

sincos

l
 (2) 

Using the relative velocity equation, 

  ( )
jrir
jrirxk

rxvv

ABAB

AB

ABABAB

rr

rrr

rrrr

θωθω

θθω

ω

sincos
cossin
/

−−=

+−=

+=

 

and 

( )
( ) ( )irjr

jixkv

rxvjvv

BCABBCAB

BCB

BCBCBC

r
l

r
l

r
l

r
l

rr

rrrrr

φωθωφωθω

φφω

ω

coscossinsin

cossin
/

+−+−=

++=

+==

 

The x component yields 

 
φ
θωω

cos
cos

ABBC
r
l

−=   (3) 

which when substituted into the y component leads to 

 
)tancos(sin φθθ

ω
+

−=
r

v
AB  (4) 

(b)The relative acceleration equations give 
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( )

( ) ( ) jrrirr

rxxrxaa
2
ABAB

2
ABAB

ABABABABABAB
rr

rrrrr

θωθαθωθα

ωωα

cossinsincos
//

−−++−=

++=
 

and 

  ( )
( ) jrr

irr

rxxxrajaa

2
BCBC

2
ABAB

2
BCBC

2
ABAB

CBBCBCBCBCBC

r
ll

r
ll

rrrrrrr

φωφαθωθα

φωφαθωθα

ωωα

cossincossin

sincossincos
/

−++−+

−−−−=

++==

 

The x component is used to determine 

  ( )φωθαθω
φ

α sincossin
cos

2
BCAB

2
ABBC rr1

l
l

++−=  

Which when used in the y component leads to 

  ( )φθθ
φφωφθωφωθωα

tancossin
tansintansincoscos

+
+−+−

−=
r

rra 2
BC

2
AB

2
BC

2
AB

AB
ll

  (5) 

Equation (5) is used to determine the angular acceleration of the crank using eqs.(1) - (4). 

Problem 1.14 illustrates application of the relative velocity and relative acceleration 
equations for rigid body kinematics. 

 

1.15 Determine the reactions at A for the 
two-link mechanism of Figure P1.15.  The 
roller at C rolls on a frictionless surface. 

 

Given :  θ = 30°,  LAB = 2 m,  LBC = 3 m,  mAB = 2.4 kg,  mBC = 3.6 kg, vC = 2.6 m/sec, aC = 
-1.4 m/sec2 

Find : Ax ,  Ay 

Solution :  From the law of sines 

 

3330
L
L

LL

BC

AB

ABBC

.sinsin

sinsin

==

=

θφ

φθ

 

From trigonometry 
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  94301 2 .sincos =−= φφ  

The relative position vectors are 

 
( )
( ) mjijiLr

mjijiLr

BCBC

ABAB
rrrrr

rrrrr

−=−=

+=+=

83.2sincos

73.1sincos

φφ

θθ
 

Using the relative velocity equation between two particles on a rigid body, 

 

( ) ( )jii
kxrvv

jiv
kxrvv

BCABBCAB

BCBCBCC

ABABB

ABABAB ω

ωωωω
ω

ωω

83.273.16.2

73.1

/

/

+++−=
+=
+−=

+=

 

Equating like components from both sides leads to 

 
62

0832731

BCAB

BCAB

.
..

=+−
=+

ωω
ωω

 

Simultaneous solution of the above equations leads to 

 
s

rad986.0,
s

rad61.1 =−= BCAB ωω  

Use of the relative acceleration equation between two particles on a rigid body, 
 

 

( )

( ) ( )

( )
( ) ( )jii

kxrkxkxraa

jia

kxrkkxraa

62.183.272.123.74.1

s
m59.273.148.4

//

2

//

−++++−=−
++=

−+−−=

++=

BCABBCAB

BCBCBCBCBCBC

ABABB

ABABABABABAB x

αααα
ωωα

αα

ωωα

 

Equating like components from both sides leads to 

 
638

621832721

BCAB

BCAB

.
...

−=+−
=+

αα
αα

 

Simultaneous solution of the above equations leads to 

  22 s
rad91.2,

s
rad72.5 −== CAB Bαα  

The relative acceleration equations are used to calculate the accelerations of the mass 
centers of the links as 
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2

2

s
m66.364.13

s
m65.309.5

jia

jia

+−=

+−=

BC

AB

 

Free body diagrams of the two bar linkage at this instant of time are shown below 
 

 

 

 

 

 

Summing moments about C 

 

( ) ( )

( )

φφθ

φθαα

φφθφθ

coscoscos

sinsin

coscoscoscoscos

..

2
LamL

2
Lam

2
Lam

2
LamII

2
LgmL

2
LgmLLA

MM

BC
yBCBC

AB
yAB

BC
xBC

AB
xABBCBCABAB

BC
BCBC

AB
ABBCABy

effCextC

BCAB

BCAB

+⎟
⎠
⎞

⎜
⎝
⎛ ++

++−−=

−⎟
⎠
⎞

⎜
⎝
⎛ +−+

= ∑∑

 

Noting that 

  2222 mkg7.2
12
1,mkg8.0

12
1

⋅==⋅== BCBCBCABABAB LmILmI  

and substituting given and calculated values and solving for Ay leads to  

  N49.28=yA  

Summing forces in the horizontal direction 

 
BCAB xBCxABx

effxextx

amamA

FF

+=

=∑ ∑ .. )()(
 

Substituting given and calculated values leads to  

  N32.61−=xA  

AB

AB 

AB AB

AB AB

BC

BC

AB
BC

BC BC 
BCBC 

x 

x 

y 

y

x

y c

A 

A

m 

m

m

m
m m

I Iα α

g g

= a 

a

a

a

 EXTERNAL FORCES
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Problem 1.15 illustrates (a) application of the relative velocity equation for a linkage, (b) 
application of the relative acceleration equation for a linkage, and (c) application of 
Newton’s laws to a system of rigid bodies. This problem is a good illustration of the 
effectiveness of the effective force method of application of Newton’s Laws. Use of this 
method allows a free body diagram of the entire linkage to be drawn and used to solve for 
the unknown reactions. Application of Newton’s Laws to a single rigid body exposes the 
reactions in the pin connection at B and complicates the solution. 

 

1.16 Determine the angular acceleration of 
each of the disks in Figure P1.16.  

 

Given: Disk of IP = 4 kg-m2, r = 60 cm with 
(a) m1 = 30 kg and m2 = 20 kg blocks 
attached or (b) F1 = 270 N and F2 = 180 N 
forces attached. 

Find: α 

Solution: 

(a) Free body diagrams of the disk and the blocks are shown below 

 

 

 

 

 

 

Summing moments about the center of the disk 

 

( ) ( )

s
rad

22.68=
r)m+m(+I

)grm-m(=

rm+rm+I=grm-grm

M=M

2
21p

21

2
2

2
1p21

O eff.O ext.

α

ααα

∑∑

 

(b) Free body diagrams of the disk are shown below 

m

EXTERNAL FORCES EFFECTIVE FORCES

mm

m

=

Ipg p

mg r rα α

α

g2 21 1
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m Ipg pα

=

EXTERNAL FORCES EFFECTIVE FORCES

F F2 1

R

 

Summing moments about the center of the disk 

 

( ) ( )

( )
s

rad
2

21 13.5
I

rFF=

I=rF-rF

M=M

P

p21

O eff.O ext.

=
−

∑∑

α

α  

Problem 1.16 illustrates application of Newton's Laws to systems of rigid bodies. It also 
illustrates the difference between an applied force and a mass. 

 

1.17 Determine the reactions at the pin support 
and the applied moment if the bar of Figure 
P1.17 has a mass of 50 g.  

 

Given: α = 14 rad/sec2, ω = -5 rad/sec, m = 50 
kg 

L = 4 m, θ  = 10° 

Find: M, Ox, Oy 

Solution: The bar's centroidal moment of inertia of the bar  

  mkg 66.67=)m kg)(4 (50
12
1 22 ⋅=Lm

12
1=I 2  

Free body diagrams of the bar at this instant are shown below 
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Summing moments about O 

 

mN 2120=
4

m) )(4
sec
m kg)(9.81 (50

)
sec
rad ](14

16
)m kg)(4 (50+m-kg [66.67

cos

cos

2

2

2
2

⋅

∑∑

+

=

4
Lmg+)

16
Lm+I(=M

4
L

4
Lm+I=

4
Lmg-M

)M(=)M(

2

eff.Oext.O

θα

ααθ

 

Summing forces in the horizontal direction 

 

N -1110=)sin10
s

rad (14
4
m 4kg) (50+

 cos10)
s

rad (-5
4

m) kg)(4 (50-

sincos

2

2

°

°

∑∑

=

 
4
Lm+

4
L-m=O

)F(=)F(

2
X

eff.xext.x

θαθω

 

Summing forces in the vertical direction 
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N 1400=)
s
m kg)(9.81 (50+

)cos10
s

rad (14
4

m) kg)(4 (50+sin10)
s

rad (-5
4

m) kg)(4 (50

cossin

2

2
2 °°

∑∑

=O

 
4
Lm+

4
Lm=mg-O

 

)F(=)F(

y

2
y

eff.yext.y

θαθω

 

Problem 1.17 illustrates application of Newton's Laws to rigid bodies. 

 

1.18 The disk of Figure P1.18 rolls without slipping. Assume if P = 18 N. (a) Determine 
the acceleration of the mass center of the disk. (b) Determine the angular acceleration of 
the disk. 

 
Given:   m = 18 kg, P = 18 N, r = 20 cm 

Find: a  

Solution: (a) If the disk rolls without slip then its angular 
acceleration is related to the acceleration of the mass center by 

  αra =  

Free- body diagrams of the disk at an arbitrary instant are shown below 
 

mg

P

F

N

mr a
r2

1 2

ma

 EXTERNAL FORCES  

 

Summing moments about the contact point 
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mg

P

F

N

mα

EXTERNAL FORCES

Ια

G
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G
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( ) ( )

( )
( ) 2

2

..

s
m6.67

kg1.83
N182

3
2

2
1

===

+=

+=
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m
Pa

ram
r
amrrP

ramIrP

MM effCextC

α

 

(b) The angular acceleration of the disk is 
2r/s 33.35==

r
aα

 

Problem 1.18 illustrates application of Newton’s Laws to a rigid body. 

 

1.19 The coefficient of friction between the disk of Figure 
P1.18 and the surface is 0.12. What is the largest force that 
can be applied such that the disk rolls without slipping?  

 

Given: m = 1.8 kg, r = 20 cm, μ = 0.12 
Find:   Pmax.  for no slip 
 
Solution:  Free body diagrams of the disk at an arbitrary instant are shown below. 

 

 
 
 
 
 
 
 
Summing moments about the contact point, 

 
ramIrP

MM effcextc

+=

= ∑∑
α

.. )()(
  (1) 

If the disk rolls without slip then 

 
r
a

=α   (2) 
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Substitution of eq.(2) into eq.(1) leads to 

 
m3
P2a =   (3) 

Summing moments about the mass center of the disk 

 

( ) ( )

3
P

m3
P2m

2
1am

2
1F

r
amr

2
1rF

MM

2

effGextG

===

==

= ∑∑ ..

 

The maximum allowable friction force is μmg, thus in order for the no slip assumption to 
be valid, 

 

N6.363
3

=<

<

mgP

mgP

μ

μ
 

Problem 1.19 illustrates application of Newton’s Laws to a rigid body dynamics problem 
and rolling friction. 

 

1.20 The coefficient of friction between the disk of Figure 
P1.18 and the surface is 0.12. If P = 22 N, what are the 
following? (a) Acceleration of the mass center. (b) Angular 
acceleration of the disk. 

 

Given: r = 20 cm, m = 1.8 kg, P = 15 N, μ = 0.12 

Find: , α 

Solution: (a) Free body diagrams of the disk at an arbitrary instant of time are shown below 

 

Summing moments about the contact point between the disk and the surface 
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( ) ( )

α2

O eff.O ext.

mr
2
1+ram=Pr

M=M ∑∑
                                                           (1) 

Summing moments about the mass center 

 

( ) ( )

α2

G eff.G ext.

mr
2
1=Fr

M=M ∑∑
  (2) 

First assume the disk rolls without slipping. Then the velocity and the acceleration of the 
contact point are zero, which in turn implies that a  = rα. Substituting into eq.(1) yields 

 
s

rad27.8 2=
3mr
2P=α  

If the assumption of no slip is valid, then the friction force developed is less than the 
maximum allowable friction force, 

  2.12Nmax =mg=F μ  

The friction force assuming no slip is calculated using eq.(2), 

  ( )( ) N5.0
s

rad27.8m0.2kg1.8
2
1

2
1

=⎟
⎠
⎞

⎜
⎝
⎛=αmr=F  

(b) Thus the disk rolls and slides. The friction force takes on its maximum permissible value 
of 2.12 N. The velocity of the contact point is not zero and is independent of the velocity of 
the mass center implying that there is no kinematic relation between the angular acceleration 
and the acceleration of the mass center. Setting F = 2.12 N in eq.(2) leads to  

 
( )

( )( ) s
rad 11.8

m0.2kg1.8
N2.1222

2=
mr

F=α  

Problem 1.20 illustrates application of Newton's Law to a rolling rigid body. Since it is not 
known whether the disk slides while rolling, an assumption of no slip is made. The 
assumption is proved false by checking the friction force. If an assumption of rolling and 
slipping is first made, there is no convenient way to check the assumption. 

 

1.21 The 3 kg block of Figure P1.21 is displaced 10 mm downward and then released from 
rest. (a) What is the maximum velocity attained by the 3-kg block? (b) What is the 
maximum angular velocity attained by the disk?  
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Given: m1 = 3 kg, m2 = 5 kg,  

IP = 0.25 kg-m2, r = 20 cm,  

K = 4000 N/m, δ = 10 mm 

Find: , ωmax     

Solution: Since gravity and spring forces are the only 
external forces doing work, energy is conserved. Let 
position 1 refer to the position when the 3 kg block is 
displaced 10 mm. Let position 2 refer to the position 
when the velocity is a maximum. Then 

  V+T=V+T 2211   (1) 

The spring is stretched when the system is in equilibrium, due to the gravity of the blocks. 
Thus when the spring is in equilibrium, it has a non-zero potential energy. However, when the 
system is in equilibrium its total energy is zero. Thus the potential energy due to gravity 
balances with the potential energy due to the static deflection in the spring. Neither must be 
included in the analysis. With this in mind 

  0=T 1  

  m0.2N ⋅=k
2
1=V 2

1 δ  

  0=V 2  

  ωωωω 2
2

2
2P

2
2

2
2

2
2

2
12 0.285=I

2
1+rm2

1+rm2
1=T  

Substitution into eq.(1) leads to 

 
s

rad0.837max == .2 ωω
 

Then  

0.2 m 0.837 rad/s 0.167 m/s 

Problem 1.21 illustrates application of conservation of energy to a system of rigid bodies. It 
also illustrates that the potential energy present in a spring when a system is in equilibrium 
will balance with potential energies of the gravity forces that caused the static deflection. 
Neither must be included in a work-energy analysis as they cancel with each other. 
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1.22 The center of the thin disk of Figure P1.22 is 
displaced 15 mm and released. What is the maximum 
velocity attained by the disk, assuming no slipping 
between the disk and the surface? 

 

Given: m = 2 kg, r = 25 cm, k = 20,000 N/m, δ = 15 mm, no slip 

Find: vmax. 

Solution: Since the disk rolls without slipping, the velocity of the point of contact between the 
disk and the surface is zero, and hence the friction force does no work. Thus the spring force 
is the only external force which does work. The system is conservative. Let position 1 refer to 
the initial position of the system when the center is displaced 15 mm. Let position 2 refer to 
the position when the center attains its maximum velocity. Then from conservation of energy 

  V+T=V+T 2211   (1) 

where 

  0=T1  

  m2.25N=))(0.015m
m
N(20000

2
1 2 ⋅=k

2
1=V 2

1 δ  

  ω 2
2

22
2 )mr

2
1(

2
1+vm

2
1=T  

Since the disk rolls without slip  

  22 rv ω=  

and 

  2
22 vm

4
3=T  

Substituting into eq.(1) leads to 

 
s
m1.22=

kg)3(2
m)4(2.25N

.max2
⋅=v=v  

Problem 1.22 illustrates application of conservation of energy to a system involving a rigid 
body. The time history of motion for this system is examined in Chapter 4. 
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1.23 The block of Figure P1.23 is given a displacement δ and 
then released. (a) What is the minimum value of δ such that 
motion ensues? (b) What is the minimum value of δ such that 
the block returns to its equilibrium position without stopping? 

 

Given:  m, k 

Find: (a) value of δ for motion, (b) value of δ such that block returns to equilibrium 

Solution: (a) In order for motion to occur when the block is released, the spring force must 
be larger than the friction force. That is 

 

k
mg
mgk

μδ

μδ

>

>
 

(b) In order for the block to return to equilibrium before motion ceases, the initial potential 
energy stored in the spring must not be dissipated due to friction before the block returns to 
equilibrium. Suppose the block is given a displacement just sufficient to return it to 
equilibrium before motion ceases.  Let position 1correspond to the initial position and 
position 2 correspond to the position when the block returns to its equilibrium position. 
The principle of work energy states 

  222111 VTUVT +=++ −  

Since the system is released from rest, T1 = 0. Since the displacement is just sufficient to 
return the block to equilibrium, it has a zero velocity when it returns to equilibrium and T2 
= 0. Since the block is in its equilibrium position in position 2, V2 = 0. The work done by 
non-conservative forces is the work done by the friction force. Thus 

 

k
mg2

0mgk
2
1 2

μδ

δμδ

=

=−
 

Problem 1.23 illustrates motion of a mass-spring system when dry fiction is present. This 
problem is considered again in Chapter 3 in the discussion of Coulomb damping. 

 

1.24 The five-blade ceiling fan of Figure P1.24 operates at 60 rpm. The distance between 
the mass center of a blade and the axis of rotation is 0.35 m. What is the total kinetic 
energy? 
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Given: ω = 60 rpm, ceiling fan shown 

Find:  T 

Solution: The rotational speed is 
converted to rad/sec by 

   

sec
rad6.283

sec60
min1

rev1
rad2π

s1
rev60

==ω  

The velocity of the mass center of the motor 

  ( )
s
m0.082ωm0.013 ==v  

The kinetic energy of the motor is 

  ( ) ( )
mN101.5

s
rad6.283mkg5.14

2
1

s
m0.082kg4.7

2
1

2
1

2
1

2
2

2

22

⋅=

⎟
⎠
⎞

⎜
⎝
⎛−+⎟

⎠
⎞

⎜
⎝
⎛=

+= ωIvmTm

 

The velocity of the mass center of each blade is  

  ( )
s
m2.2035.0 == ωmv  

The kinetic energy of each blade is 

  ( ) ( )
mN21.88

s
rad6.283mkg0.96

2
1

s
m2.20kg1.21

2
1

2
1

2
1

2
2

2

22

⋅=

⎟
⎠
⎞

⎜
⎝
⎛⋅+⎟

⎠
⎞

⎜
⎝
⎛=

+= ωIvmTb

 

The total kinetic energy of the ceiling fan is 

 
( )

mN210.9
mN21.885mN101.55

⋅=
⋅+⋅=+= bm TTT
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A B C 

Z D 

ABdm BC dm 
CDdm

Problem 1.24 illustrates calculation of kinetic energy of a rigid body. 

 

1.25 The U-tube manometer shown in Figure 
P1.25 rotates about axis A-A at a speed of 40 
rad/sec. At the instant shown, the column of 
liquid moves with a speed of 20 m/sec 
relative to the manometer. Calculate the total 
kinetic energy of the column of liquid in the 
manometer. 

 

Given: v = 20 m/sec, ω = 40 rad/sec, A = 
0.0003 m2 , S.G.=1.4 

Find: T 

 

Solution: The column of liquid is broken into three 
sections. The velocity of the fluid particles 
comprising each section is 

 

kjv
kiv
kiv

ω
ω
ω

6.0−=
+=
+=

v
rv
rv

CD

BC

AB

 

Consider a differential mass, defined in each part of the manometer as shown. The kinetic 
energy of the differential mass is 

    dmdT 2

2
1 v=  

The kinetic energy of the particles in each section is obtained by integrating dT over the 
liquid in that section.  

 

Section AB: dmAB = ρAdr 

 
( )

( )22

222
m20

0
AB

002670v20A
2
1

drrvA
2
1T

ωρ

ωρ

..

.

+=

+= ∫
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Section BC: dmBC = ρAdr 

 
( )

( )22

222
m60

0
BC

0720v60A
2
1

drrvA
2
1T

ωρ

ωρ

..

.

+=

+= ∫
 

Section CD: dmCD = ρAdz 

 

( )

( )22

22
m1

0
CD

360vA
2
1

dz360vA
2
1T

ωρ

ωρ

.

.

+=

+= ∫
 

The total kinetic energy is 

 

( )

( ) ( )

mN297.4

s
rad400.435

s
m201.8m0.0003

m
kg10001.4

2
1

435.08.1
2
1

22
2

3

22

⋅=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

+=

++=

ωρ vA

TTTT CDBCAB

 

Problem 1.25 illustrates the kinetic energy calculation of a column of liquid in a 
manometer. The vibrations of the column of liquid in a manometer rotating about an axis 
other than an axis through its center are nonlinear if the rotational speed is large enough. 
The differential equations are formulated using energy methods and a kinetic energy 
calculation similar to that developed in the solution of this problem. 

 

1.26 The displacement function for a simply 

supported beam of Figure P1.26 is  

, sin cos  

where c = 0.003 m and t is in seconds. Determine the kinetic energy of the beam. 
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Given: ,  

Find: T 

Solution: The kinetic energy of the beam is 

1
2

1
2

sin sin  

1
2

sin sin  

1
4

sin  

Problem 1.26 illustrates the calculation of the kinetic energy of a continuous system. 

 

1.27 The block of Figure P1.27 is displaced 1.5 cm from equilibrium 
and released.    

(a) What is the maximum velocity attained by the block?  
(b) What is the acceleration of the block immediately after it is 

released?   
 

Given: m = 65 kg, k = 12,000 N/m,  x0 = 1.5 cm 

Find: (a) vmax  (b) a0 

Solution: When the system is in equilibrium the spring is stretched and has a static 
deflection Δ. Summing forces on the free-body diagram of the system’s equilibrium 
position 
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m 053.0
N/m12000

)m/s 81.9)(kg 65(
0

0

2

===Δ

=Δ−

=∑

k
mg
kmg

F
 

(a) Let position 0 refer to the initial position of the system. Let position 1 refer to the 
system when the velocity of the block is a maximum. Since the system is is released 
from rest in position 0, T0=0. The total stretching in the spring in position 0 is 

 
m 068.0m 053.0m 015.000 =+=Δ+= xδ  

 
If the equilibrium plane is chosen as the datum plane for referencing the potential energy 
due to gravity the potential energy in position 0 is 

mN 18.18

)m 068.0)(N/m 12000(
2
1) m/s 81.9(kg) 65(

2
1

0

22
0

2
000

⋅=

+−=

+−=

V

V

kmgxV δ

 

Since all forces are conservative, application of conservation of energy is applied leading 
to 

11m-N 18.18 VT +=  

The maximum kinetic energy occurs when the potential energy is a minimum, which 
occurs when the system passes through its equilibrium position, 

mN 85.16)m 053.0)(N/m 12000(
2
1

2
1 22

1 ⋅==Δ= kV  

Hence 

m/s 202.0
2
1mN 85.16mN 18.18

max

2
max

=

+⋅=⋅

v

mv
 

(b) Application of Newton’s law to the free-body diagram of the block in its initial position 
leads to 
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2
0

2
0

00

0

0

m/s 74.2

)m 068.0(
kg 65
N/m 12000m/s 81.9

)(

)(

−=

−=

Δ+−=

Δ+−

=∑

a

a

x
m
kga

xkmg
maF

 

Problem 1.27 illustrates (a) application of conservation of energy to a particle and (b) 
application of Newton’s law to the free-body diagram of a particle. 

 

1.28 The slender rod of Figure P1.28 is 
released from the horizontal position when 
the spring attached at A is stretched 10 mm 
and the spring attached at B is unstretched. 
(a)  What is the angular acceleration of the 
bar immediately after it is released? (b)  
What is the maximum angular velocity 
attained by the bar? 

 

Given:  m = 1.2 kg, L = 1m, δ1 = 10 mm, k1 = 1200 N/m, k2 = 1000 N/m 

Find:   (a) Ymax., (b) ωmax. 

Solution: Consider first the system immediately after release. 

mg

mL
2

=N

k

N

A

1 1

B

I
δ

α

α

 EXTERNAL FORCES  

Summing moments about B 
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( ) ( )

2

11

2

11

..

s
rad29.15

2
3

32

−=

⎟
⎠
⎞

⎜
⎝
⎛ −=

=+−

= ∑∑

δα

αδ

kmg
mL

LmLmgLk

MM
effBextB

 

Hence α is clockwise and the bar moves upward.  Now consider the geometry of the bar 
when it has moved a distance y upward. The horizontal displacement of B is 

22
B yLL −−=δ  

(b) Let ω be the angular velocity of the bar. Then using the relative velocity equation 

 
( )

( ) jij
jikxjv

θωθω
θθω

cossin
sincosi

LLvv
LLvv

BA

BAA

−+=
−−+==

 

From the x component of the above equation 

  ωθsinLvB −=  

The velocity of the mass center of the bar is 

 

ω

θωθω

θωθω

2

cos
2

sin
2

sin
2

cos
2

sin

L

LLv

LLL

=

−+−=

⎟
⎠
⎞

⎜
⎝
⎛ −−+−=

v

ji

θjikxiv

r
 

Let position 2 refer to the position of the system when the angular velocity is a maximum. 
Energy is conserved between position 1 and position 2. 

  ( ) ( )
( ) 222222

2
2

111

2
2222

2
2

11
2
11

2211

mL
6
1yLL2yL2k

2
1yk

2
1yk

2
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2
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2
1mL

12
1

2
1yLLk

2
1yk

2
1

2
ymgk

2
1

VTVT

ωδ

ωωδδ

+−+−++⎟
⎠
⎞

⎜
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⎟
⎠
⎞

⎜
⎝
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+=+

(3) 

The above equation could be expressed as 

L -y

y

22
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  21
22

2 VVmL
6
1T −== ω  

Thus the maximum angular velocity occurs when V1-V2 is maximized. To this end 

 

( ) ( )

0
y1
y1000y2001146

yL
Lykykk

2
mgk0VV

dy
d

2

22
2

121121

=
−

−−

−
−−+−==−

.

δ

 

A trial and error solution of the above equation reveals that the maximum angular velocity 
occurs for y = 0.0051 m. Then from eq. (3), 

 
s

rad322.0=ω  

Problem 1.28 illustrates application of conservation of energy to a rigid body system. 

 

1.29 Let x be the displacement of the left end of the bar of the system in Figure P1.29. Let 
 represent the clockwise angular rotation of the bar. (a) Express the kinetic energy of the 

system at an arbitrary instant in terms of  and . (b) Express the potential energy of an 
arbitrary instant in terms of  and . 

 

Given:  and  as generalized coordinates 

Find: (a) T (b) V 

Solution: (a) The kinetic energy of a rigid body is 

22

2
1

2
1 ωIvmT +=  

The angular velocity of the bar is θω &= . The displacement of the mass center in terms of 
the chosen generalized coordinates is 

θsin
2
Lxx +=  

Thus the velocity of the mass center is 
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θθ cos
2
&&& Lxx +=  

Hence the kinetic energy of the system at an arbitrary instant is 

2
2

2
1cos

22
1 θθθ &&& ILxmT +⎟

⎠
⎞

⎜
⎝
⎛ +=  

If the small-angle assumption is used the kinetic energy of the linearized system is 

2
2

2

42
1

2
1

2
1 θθ &&&& ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++= ILmxmLxmT

 

(b) The potential energy is due to the springs and is
 1

2
1
2

3
4

 

 

Problem 1.29 illustrates the evaluation of the kinetic energy and potential energy of a rigid 
body at an arbitrary instant in terms of chosen generalized coordinates. 

 

1.30 Repeat problem 1.29 using coordinates , which is the displacement of the mass 
center, and , which is the displacement of the point of attachment of the spring that is a 
distance 3L/4 from the left end.  

 

Given:  and  as generalized coordinates. 

Find: (a) T (b) V 

Solution: The kinetic energy of the bar at an 
arbitrary instant is 

1
2

1
2

4
 

The potential energy of the bar at an arbitrary instant is 

1
2

3 2
1
2

 

Problem 1.30 illustrates the evaluation of the kinetic and potential energy of a rigid body at 
an arbitrary instant in terms of chosen generalized coordinates. 
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1.31 Let θ represent the clockwise angular displacement of the pulley system in Figure 
P1.31 from the system’s equilibrium position. 

(a) Express the potential energy of the 
system at an arbitrary instant in terms of θ. 

(b) Express the kinetic energy of the 
system at an arbitrary instant in terms of . 
 
 
Given:  θ as generalized coordinate 

Find: (a) V   (b) T 

Solution: Consider the free-body diagram 
of the system in its equilibrium position. 
Summing moments about the center of the pulley 

0)2(2)2(2
0

21 =+Δ−Δ−

=∑
rmgrkrk

M C
 

From the geometry of the system 

rrst 2
21 Δ

=
Δ

=θ  

which when substituted into the previous equation leads to 

k
mg

k
mg

9
8        

9
4

21 =Δ=Δ  

Let x1 represent the displacement of the sliding block from the system’s equilibrium 
position. Let x2 represent the displacement of the hanging block from the system’s 
equilibrium position. From geometry 

θθ rxrx 2       21 ==  

(a) Choosing the equilibrium position of the system as the datum for potential energy 
calculations, the potential energy at an arbitrary instant is 

2

22

2
2

22
2

1

2
9

822
2
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θθ
 

Simplification leads to 
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(b) The kinetic energy of the system at an arbitrary instant is 
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Problem 1.31 illustrates the calculation of a potential and kinetic energy of a system of 
rigid bodies at an arbitrary instant in terms of a chosen generalized coordinate. 

 

1.32 A 20 ton railroad car is coupled to a 15 ton car by moving the 20 ton car at 5 mph 
toward the stationary 15 ton car. (a) What is the resulting speed of the two-car coupling? 
(b) What would the resulting speed be if the 15 ton car is moving at 5 mph toward a 
stationary 20 ton car? 

 

Given:  W1 = 40000 lb, W2  = 30000 lb, v1 = 5 mph  

Find: v2 

Solution: (a) Consider the impulse and momentum diagrams below 

+

=

SYSTEM MOMENTA
BEFORE COUPLING

SYSTEM MOMENTA
AFTER COUPLING

SYSTEM EXTERNAL
IMPULSES DURING
COUPLING

W

W W

W

V

V V

1

2 2

1

1 2

1

g

g g

g

 

There are no external impulses acting on the two car system during coupling. Applying the 
principle of linear impulse and linear momentum 
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(b) If the 15 ton car has a velocity of 5 mph the velocity of the system after coupling is 

30000 lb 5 mph
70000 lb 2.14 mph 

Problem 1.32 illustrates application of the principle of linear impulse and linear 
momentum to a system when linear momentum is conserved. The couplings between 
railroad cars are actually elastic. Thus, after coupling the cars move relative to one another. 
The two car system will move together with a rigid body motion, but relative motion will 
occur. This is an example of a unrestrained system considered in Chapters 6 and 7. 

 

1.33 The 15 kg block of Figure P1.33 is moving with a velocity of 3 m/s at t = 0 when the 
force F(t) is applied to the block. (a) Determine the velocity of the block at t = 2 s. (b) 
Determine the velocity of the block at t = 4 s. (c) Determine the block’s kinetic energy at t 
= 4 sec. 

 

Given: 15 kg, 3 m/s, 0.08, F(t) 

Find: (a) v(t=2 s)   (b) v(t=4 s) (c) T 

Solution: (a) The principle of impulse and momentum is used to determine the velocity at 
t=2 s. Application of the principle leads to 

 

or substituting in given numbers yields 

15 kg 3
m
s

1
2

20 N 2 s 0.08 15 kg 9.81 
m
s

 2 s 15 kg  

2.76 m/s 

(b) The velocity at t = 4 s is determined from the principle of impulse and momentum   
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which upon substitution of given numbers yields 

15 kg 3
m
s

1
2

30 N 3 s 30 N 1 s 0.08 15 kg 9.81 
m
s

 4 s 15 kg  

4.86 m/s 

(c) The kinetic energy is  

1
2

1
2

15 kg 4.86 m/s 177.1 J 

Problem 1.33 illustrates application of the principle of impulse and momentum. 

 

1.34 A 400 kg forging hammer is 
mounted on four identical springs, each 
of stiffness k = 4200 N/m. During the 
forging process, a 110 kg hammer, 
which is part of the machine, is dropped 
from a height of 1.4 m onto an anvil, as 
shown in Figure P1.34. (a) What is the 
resulting velocity of the entire machine 
after the hammer is dropped? (b) What 
is the maximum displacement of the 
machine? 

 

Given: m = 400 kg, k = 42000 N/m, 
110 kg, h = 1.4 m 

Find: (a) v (b)  

Solution: (a) Application of the principle of conservation of energy to the hammer as it 
drops leads to the velocity of the hammer immediately before impacting the anvil 

1
2

2 2 9.81 
m
s

1.4 m 5.24 
m
s
 

Applying the principle of impulse and momentum to the hammer and anvil as the hammer 
strikes leads to (assuming the hammer is part of the machine and the hammer sticks to and 
moves with the machine) 

110 kg 5.24 m/s
400 kg

1.44 m/s 
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(b) Application of the principle of conservation of energy between the time immediately 
after impact to the time when the machine reaches its maximum displacement 

1
2

1
2

 

 
400 kg

4200 N/m
1.44

m
s

0.137 m 

Problem 1.34 illustrates application of the principle of impulse and momentum and the 
principle of conservation of energy. 

 

1.35 The motion of a baseball bat in a ballplayer’s hands is approximated as a rigid-body 
motion about an axis through the player’s hands, as shown in Figure P1.35. The bat has a 
centroidal moment of inertia I. The player’s “bat speed” is ω, and the velocity of the 
pitched ball is v. Determine the distance from the player’s hand 
along the bat where the batter should strike the ball to minimize the 
impulse felt by his/her hands. Does the distance change if the player 
“chokes up” on the bat, reducing the distance from G to his/her 
hands? 
 
 
Given: I, a, v, ω, m 

Find: b 

Solution: When the bat strikes the pitched ball, the ball exerts an impulse on the bat, call it 
B. Since the batter is holding the bat, he feels an impulse, call it P. The effect of the 
impulse on the bat is to change the “bat speed” from ω before hitting the ball to ω2 after 
hitting the ball. Impulse-momentum diagrams of the bat during this time are shown below. 

 

 

ωω

ωω mama

SYSTEM MOMENTA
BEFORE STRIKING
BALL

SYSTEM MOMENTA
AFTER STRIKING
BALL

SYSTEM EXTERNAL
IMPULSES DURING
STRIKING
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Applying the principle of linear impulse and linear momentum 

  ( ) PmaB
maBPma

2

2

+−=
=−+

ωω
ωω

   (1) 

Applying the principle of angular impulse and angular momentum about an axis through 
the batter’s hands gives 

  ( ) ( )2
2

2
2

2
2

ma
b
1B

maBbma

ωω

ωωωω

−+Ι=

+Ι=−+Ι
   (2) 

Equating B from eqs. (l) and (2) leads to 

  ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+Ι
−= ma

b
maP

2

2ωω  

Note that P = 0 if 

 
ma

ab Ι
+=  

Problem 1.35 illustrates application of the principle of linear impulse and momentum and 
angular impulse and momentum. The location where the bat should strike the ball to 
minimize the impulse felt by the batter is called the center of percussion. 

 

1.36 A playground ride has a centroidal moment of inertia of 17 slug · ft2. Three children 
of weights 50 lb, 50 lb, and 55 lb are on the ride, which is rotating at 60 rpm. The children 
are 30 in. from the center of the ride. A father stops the ride by grabbing it with his hands. 
What angular impulse is felt by the father? 

Given: I = 17 slugs-ft2, W1 =50 lb, W2 = 50 lb, W3 = 55 lb, r = 20 in, ω = 60 rpm = 6.48 

rad/sec 

Find: J to stop the ride. 

Solution:  The father applies an angular impulse about the center of the ride of magnitude J 
to stop the ride. Consider the impulse and momentum diagrams 
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The principle of angular impulse and angular momentum about the center of the ride is 
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Problem 1.36 illustrates application of the principle of angular impulse and angular 
momentum. 

 

1.37 The natural frequencies of a thermally loaded fixed-fixed beam (Figure P1.37) are a 
function of the material properties of the beam, including:  

                   E, the elastic modulus of the beam 

                   , the mass density of the beam 

                   , the coefficient of thermal expansion 

The geometric properties of the beam are 
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                  A, its cross-sectional area 

                  I, its cross section moment of inertia 

                  L, its length 

Also, 

                  ∆ , the temperature difference between the installation and loading 

(a) What are the dimensions involved in each of the parameters? 
(b) How many dimensionless parameters does the Buckingham Pi theorem predict are 

in the non-dimensional formulation of the relation between the natural frequencies 
and the other parameters? 

(c) Develop a set of dimensionless parameters. 
 

 

Solution: (a) The dimensions of the parameters are 

E: F/L     : M
L

FT
L

   :
Θ

    A:L   I: L   L: L  Δ :Θ    
T
 

where M represents mass, L represents length, T represents time, and Θ represents 
temperature. 

(b) The Buckingham Pi theorem implies that there are n=m-k  dimensionless parameters in 
the formulation where m is the number of dimensional parameters and k is the number of 
basic dimensions in those variables. There are 8 dimensional parameters and 4 basic 
dimensions in the parameters which implies there are 4 nondimensional parameters. 

(c) Dimensionless parameters are Π , Π Δ , Π , Π  

Problem 1.37 illustrates application of the Buckingham Pi theorem.  

 

1.38 The drag force F on a circular cylinder due to vortex shedding is a function of 

              U, the velocity of the flow 

                , the dynamic viscosity of the fluid 

                , the mass density of the fluid 

                , the length of the cylinder 



Chapter 1: Introduction 

51 
 

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
 

               , the diameter of the cylinder 

(a) What are the dimensions involved in each of the parameters? 
(b) How many dimensionless parameters does the Buckingham Pi theorem predict are 

in the non-dimensional formulation of the relation between the natural frequencies 
and the other parameters? 

(c) Develop a set of dimensionless parameters. 

Solution: (a) Dimensions of the parameters are 

U:        :       : M
L

FT
L

       : L   : L    :F 

(b) The Buckingham Pi theorem implies that there are n=m-k dimensionless parameters in 
the formulation where m is the number of dimensional parameters and k is the number of 
basic dimensions in those variables. There are 6 dimensional parameters and 3 basic 
dimensions in the parameters which implies there are 3 nondimensional parameters. 

(c) Dimensionless parameters are Π , Π , Π  

Problem 1.38 illustrates use of the Buckingham Pi Theorem. 

 

1.39 The principal normal stress σ due to forcing of a beam with a concentrated harmonic 
excitation is a function of  

                 , the amplitude of loading 

                 , the frequency of the loading 

          E, the elastic modulus of the beam 

           , the mass density of the beam 

          A, the beam’s cross-sectional area 

          I, the beam’s cross-sectional moment of inertia 

          L, the beam’s length 

           , the location of the load along the axis of the beam 

(a) What are the dimensions involved in each of the parameters? 
(b) How many dimensionless parameters does the Buckingham Pi theorem predict are 

in the non-dimensional formulation of the relation between the natural frequencies 
and the other parameters? 

(c) Develop a set of dimensionless parameters. 

Solution: (a) Dimensions of the parameters are 
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:F      :       : M
L

FT
L

  E:
F

L
      : L   : L    I:   :L   : F

L
 

(b) The Buckingham Pi theorem implies that there are n=m-k dimensionless parameters in 
the formulation where m is the number of dimensional parameters and k is the number of 
basic dimensions in those variables. There are 9 dimensional parameters and 3 basic 
dimensions in the parameters which implies there are 6 nondimensional parameters. 

(c) Dimensionless parameters are 

Π , Π , Π , Π , Π , Π  

Problem 1.39 illustrates use of the Buckingham Pi theorem. 

 

1.40 A MEMS system is undergoing simple harmonic motion according to  

3.1 sin 2 10 0.48 4.8 cos 2 10 1.74 m 

(a) What is the period of motion? (b) What is the frequency of motion in Hz? (c) What 
is the amplitude of motion? (d) What is the phase and does it lead or lag? (e) Plot 
the displacement. 

 

Given:  

Find: (a) T (b) f  (c) A  (d)  

Solution: (a) The period is 31.4   

(b) The frequency is the reciprocal of the period, 
.  

3.183 10  Hz.  

(c) The amplitude is obtained by writing the response in the form of sin 2
105 . To this end 

3.1 sin 2 10 0.48 4.8 cos 2 10 1.74
3.1 sin 2 10 t cos 0.48 cos 2 10 t sin 0.48
4.8 cos 2 10 t cos 1.74 sin 2 10 t sin 1.74  

3.1 cos 0.48 4.8 sin 1.74 sin 2 10 t 3.1 sin 0.48 4.8 cos 1.74 cos 2 10 t  

1.918 sin 2 10 t 0.6232 cos 2 10 t  

2.0774 sin 2 10 t 0.3047  
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(d) The amplitude is 2.0774 m. The phase is -0.3047 rad and is a phase lag. 
 

(e)  

 

 

 

 

 

 

 

 

Problem 1.40 illustrates simple harmonic motion. 

1.41 The force that causes simple harmonic motion in the mass-spring 
system of Figure P1.31 is 35 sin 100  N. The resulting 
displacement of the mass is 0.002 sin 30  m. (a) What is 
the period of the motion? (b) The amplitude of displacement is 

 where  is the amplitude of the force and M is a 
dimensionless factor called the magnification factor. Calculate M. (c) 
M has the form  

1

1
 

where  is called the natural frequency. If , then ; otherwise 
0. Calculate . 

Given: , , 3.5 10  N/m 
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Find: (a) T , (b) M , (c)  

Solution: (a) The period of motion is  0.2094 s.  

(b)   
. N .  

 N
2 

(c) Since ,  and  

1

1
1

1
1.5

√1.5

30 rad
s

√1.5
24.49 

rad
s
 

Problem 1.41 illustrates simple harmonic motion. 

1.42 The displacement vector of a particle is  

2 sin 20  3 cos 20    mm 

(a) Describe the trajectory of the particle. (b) How long does it take the particle to make 
one circuit around the path? 

Given:  

Find: path of particle, t 

Solution: From the given information 2 sin 20  and 3 cos 20 . Eliminating 
t between the equations leads to 

4
9

1 

The time it takes to make one circuit around the elliptical path is 

2
20

0.314 s 

Problem 1.42 illustrates the trajectory of a particle undergoing simple harmonic motion in 
x and y. 

 


