CHAPTER 1: INTRODUCTION

Short Answer Problems

1.1 True: The earth is taken to be non-accelerating for purposes of modeling systems on
the surface of the earth.

1.2 False: Systems undergoing mechanical vibrations are not subject to nuclear reactions is
an example of an implicit assumption.

1.3 True: Basic laws of nature can only be observed and postulated.
1.4 False: The point of application of surface forces is on the surface of the body.

1.5 False: The number of degree of freedom necessary to model a mechanical system is
unique.

1.6 False: Distributed parameter systems are another name for continuous systems.

1.7 True: The Buckingham Pi theorem states that the number of dimensionless variables
required in the formulation of a dimensional relationship is the number of dimensional
variables, including the dependent variable, minus the number of dimensions involved in
the dimensional variables.

1.8 True: The displacement of its mass center (x and y coordinates) and the rotation about
an axis perpendicular to the mass center are degrees of freedom the motion of an
unconstrained rigid body undergoing planar motion.

1.9 False: A particle traveling in a circular path has a velocity which is tangent to the
circle.

1.10 False: The principle of work and energy is derived from Newton’s second law by
integrating the dot product of the law with a differential displacement vector as the particle
moves from one location to another.

1.11 The continuum assumption treats all matter as a continuous material and implies that
properties are continuous functions of the coordinates used in modeling the system.

1.12 An explicit assumption must be stated every time it is used, whereas an implicit
assumption is taken for granted.

1.13 Constitutive equations are used to model the stress-strain relationships in materials.
They are used in vibrations to model the force-displacement relationships in materials that
behave as a spring.

1.14 A FBD is a diagram of a body abstracted from its surroundings and showing the
effects of the surroundings as forces. They are drawn at an arbitrary time.
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Chapter 1: Introduction

1.15 The equation represents simple harmonic motion

1.16 (a) X is the amplitude of motion; (b) w is the frequency at which the motion occurs
(c) ¢ is the phase between the motion and a pure sinusoid.

1.17 The phase angle is positive for simply harmonic motion. Thus the response lags a
pure sinusoid.

1.18 A particle has mass that is concentrated at a point. A rigid body has a distribution of
mass about the mass center.

1.19 A rigid body undergoes planar motion if (1) the path of its mass center lies in a plane
and (2) rotation occurs only about an axis perpendicular to the plane of motion of the mass
center.

1.20 The acceleration of a particle traveling in a circular path has a tangential component
that is the radius of the circle times the angular acceleration of the particle and a centripetal
acceleration which is directed toward the center of the circle which is the radius time the
square of the angular velocity.

1.21 An observer fixed at A observes, instantaneously that particle B is moving in a
circular path of radius |rB / A| about A.

1.22 It is applied to the FBD of the particle.

1.23 The effective forces for a rigid body undergoing planar motion are a force applied at
the mass center equal to ma and a moment equal to Ia.

1.24 The two terms of the kinetic energy of a rigid body undergoing planar motion are
%mﬁz , the translational kinetic energy, and % Iw? , the rotational kinetic energy.

1.25 The principle of impulse and momentum states that a body’s momentum (linear or
angular) momentum at t; plus the external impulses applied to the body (linear or angular)
between t; and t, is equal to the system’s momentum (linear or angular) at ¢, .

1.26 One, let 8 be the angular rotation of the bar, measured positive counterclockwise,
from the system’s equilibrium position.

1.27 Four, let x; be the absolute displacement of the cart, x, the displacement of the
leftmost block relative to the cart, x3 the displacement of the rightmost block away from
the cart and 6 the counterclockwise angular rotation of the bar.

1.28 Four, let x; represent the displacement of the center of the disk to the right, x, the
downward displacement of the hanging mass, x5 the displacement of the sliding mass to
the left and 6 the counterclockwise angular rotation of the rightmost pulley.

2

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
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1.29 Two, let 8 be clockwise the angular displacement of the bar and x the downward
displacement of the hanging mass.

1.30 Three, let x be the downward displacement of the middle of the upper bar, 6 its
clockwise angular rotation and ¢ the clockwise angular rotation of the lower bar.

1.31 Three, let 6 represent the clockwise angular rotation of the leftmost disk, ¢ the
clockwise angular rotation of the rightmost disk and x the upward displacement of the
leftmost hanging mass.

1.32 Infinite, let x be a coordinate measured along the neutral axis of the beam measured
for the fixed support. Then the displacement is a continuous function of x and t, w(x,t).

1.33 Three, let x; be the downward displacement of the hand, x, the downward

displacement of the palm and x5 the displacement of the fingers.

1.34 Given: Uniform acceleration, a=2 m/s. (a) v(t) = at + v, = v(5) = (2 sz) (5s) +
2

(0?) =10m (b)x(t) = a%+ Vot + xo = x(5) = %(2522) (55)2=25m

135 Given: v = 2 cos 2t i + 3sin 2¢ j + 0.4 k m/s. (a) a = = = —4sin 2¢ i +

6cos2t jm/s? = a(m) = —4sin2m i+ 6 cos 2w ]'SE2 =6jm/s?> (b)r= [vdt =
[(sin 2t + Cpi+ (—%cos 2t + Cz)i + (0.4t + C3)k] m. The particle starts at the origin

at t = 0. Application of this condition leads to) r(t) = [(sin 2t )i+ (— % cos 2t + %) j+
0.44& m. Evaluation at 7zleads to r(n) =sin2zi+—32cos 2z +325 +0.47K m =0.47zK m.

1.36 Given: v=2 m/s, =3 m, 6(0) =0 (a) v = % = s = [ vdt = 2t at t=2 s the particle
has traveled 4 m. But s = r8 thus 6 = :—2 = 1.33 rad = 76.2°. (b) The acceleration of a
particle traveling on a circular path has two components. One is % which is tangent to the

2 2
circle and is zero for this problem. The other component is UT = % = 1.33 m directed

toward the center of the circle from the position of the particle.

1.37 Given: m=2 kgl =0.5kg-m? ,a= (5i+3j)m/s?, a =10rad/s?. Effective
forces are ma = (2 kg) [(Si + 3j) sz] = (10i + 15i)522 applied at the mass center and a
couple Ia = (0.5kg - m?)(10rad/s?) = 5N - m.

1.38 Given: m = 0.1 kg, v = (9i + 11j) m/s. The kinetic energy of the particle is T =
2
“mlv|? = (0.1 kg)(VOZ + 112 m/s) = 0.711].
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1.39 Given: m=3 kg, v = (3i + 4j) m/s, d=0.2 m The angular velocity is calculated from

V| =dw = w = FL_5m/s 50 radss.
d 02m

1.40 Given: = 100] , I = 0.03 kg - m? The kinetic energy of a rigid body which rotates
about its centroidal axis is T = %Iwz. Thus 100] = %(0.03 kg - m?)w? which leads to

w = 81.65 =22,

sec
1.41 Given: m = 5 kg, = 4 m/s, w = 20 rad/s, I = 0.08 kg - m?. The kinetic energy of
a rigid body undergoing planar motion is T = %mﬁz + %I_ou2 = %(5 kg)(4 m/s)? +
%(0.08 kg - m2)(20 rad/s)? = 56].

1.42 Given: F=12,000 N, At = 0.03 s. The impulse applied to the system is [ = FAt =
(12,000 N)(0.03s) =360 N -s.

1.43 Given: m = 3 kg, v; = 0 m/s, force as given in Figure (a) The impulse imparted to
the particle is [ = fO3Sth = %(1)(100) + 2(100) +%(1)(100) =300N-s (b) The

velocity at t=2 s is given by the principle of impulse and momentum mv = [ 02 *Fdt =

2s 5s
Fdt 250 N- . . Fdt 300 N-
_ L = ®=83.3m/s. (c) The velocity after 5 s is v = Jy = - =
m 3 kg m 3 kg

100 m/s.

1.44 Given: m = 2 kg, F=6 N, t=10 s, v; = 4 m/s. The principle of work and energy is
used to calculate how far the particle travels T; + U;_, = T, after the velocity v,is
calculated from the principle of impulse and momentum mv; +1 =mv, = v, =
mv+l _ (2kg)(4m/s)+(6 N)(10s)

m 2 kg -
application of work and energy gives %(2 kg)(4 m/s)? + (6 N)x = %(2 kg)(34 m/

s2which is solved to yield x=190 m.
145 (a) -(i)) (b)-(iv) ()-(1) (d)-(v) (e)-()) (D-(v) (&)-(vi) (h)-(iii) (i)-(ix)

34m/s. Then letting x be the distance traveled
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Chapter Problems
1.1 The one-dimensional displacement of a particle is
x(t) = 0.5e7%2tsin 5¢ m

(a) What is the maximum displacement of the particle? (b) What is the maximum velocity
of the particle? (¢) What is the maximum acceleration of the particle?

Given: x(t)
Find:(@)Xmax (0)Vinax (€)max
Solution: (a) The maximum displacement occurs when the velocity is zero. Thus
x(t) = 0.5e792¢(—0.2 sin 5t + 5 cos 5t)
Setting the velocity to zero leads to
—0.2sin5t + 5cos5t =0

or tan 5t = 25 . The first time that the solution is zero is t=0.3062. Substituting this value
of t into the expression for x(t) leads to

Xmax = 0.4699 m

(b) The maximum velocity occurs when the acceleration is zero
i(t) = 0.5e7%2t[—0.2(—0.2 sin 5t + 5 cos 5t) — cos 5t — 25 sin 5t]
= 0.5e792t(—24.96 sin 5t — 6 cos 5t)

The acceleration is zero when 24.96 sin 5t — 6 cos 5t = 0 = tan 5t = —0.240.
The first time that this is zero is t=0.5812 which leads to a velocity of

Vpmin = —2.185m/s
(¢) The maximum acceleration occurs when X = 0,

X = 0.5e7%2{[—0.2(—24.96 sin 5t — 6 cos 5t) — (24.96)(5) cos 5t + 30 sin 5¢]
= 0.5e792t(34.992 sin 5t — 123.6 cos 5t)

The maximum acceleration occurs when 34.992sin5t — 123.6cos5t =0 =
tan 5t = 3.53. The time at which the maximum acceleration occurs is t=0.2589 s
which leads to

Aoy = —12.18 m/s?

Problem 1.1 illustrates the relationships between displacement, velocity and acceleration.
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1.2 The one-dimensional displacement of a particle is
x(1)=0.5¢""sin(5t+0.24) m (1)

(a) What is the maximum displacement of the particle? (b) What is the maximum velocity of
the particle? (c) What is the maximum acceleration of the particle?

Given: x(t)

Fll’ld' (a)xmax (b)vmax (C) amax

Solution: (a) The maximum displacement occurs when the velocity is zero. Thus
x(t) = 0.5e7%2¢[—0.2 sin(5t + 0.24) + 5 cos(5t + 0.24)]
Setting the velocity to zero leads to
—0.2sin(5t + 0.24) + 5cos(5t + 0.24) =0

ortan(5t 4+ 0.24) = 0.2582. The first time that the solution is zero is t=0.3062.
Substituting this value of t into the expression for x(t) leads to

Xmax = 04745 m

(b) The maximum velocity occurs when the acceleration is zero
i(t) = 0.5e792¢{—0.2[(—0.2 sin(5t + 0.24) + 5 cos(5¢t + 0.24))]
— cos(5t + 0.24) — 25sin(5t + 0.24)}
= 0.5e792t[-24.96 sin(5¢t + 0.24) — 6 cos(5t + 0.24)]
The acceleration is zero when
—24.96 sin(5t + 0.24) — 6 cos(5t + 0.24) = 0 = tan(5t + 0.24) = —0.240.
The first time that this is zero 1s t = 0.5332 which leads to a velocity of
Vpmin = —2.0188 m/s
(c) The maximum acceleration occurs when x = 0,
X = 0.5e792t{—0.2[—24.96 sin(5t + 0.24) — 6 cos(5t + 0.24)]
— (24.96)(5) cos(5t + 0.24) + 30sin(5t + 0.24)}
= 0.5e7°%2¢[34.992 sin(5t + 0.24) — 123.6 cos(5t + 0.24)]
The maximum acceleration occurs when
34.992 sin(5t + 0.24) — 123.6 cos(5t + 0.24) = 0 = tan(5t + 0.24) = 3.53.
The time at which the maximum acceleration occurs is t=0.2109 s which leads to
Aoy = —12.30 m/s?

Problem 1.2 illustrates the relationships between displacement, velocity and acceleration.

6

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Chapter 1: Introduction

1.3 At the instant shown in Figure P1.3, the slender
rod has a clockwise angular velocity of 5 rad/sec and a
counterclockwise angular acceleration of 14 rad/sec’.
At the instant shown, determine (a) the velocity of
point P and (b) the acceleration of point P.

14 rad /s’
. 2
Given: o = 5 rad/sec, oo = 14 rad/sec”, 6 = 10°

Find: Up, ap

Solution: The particle at the pin support, call it O, is fixed. Hence its velocity and acceleration
are zero. Using the relative velocity and acceleration equations between two particles on a
rigid body
Vp =V, + @ XTp,0 =—5KX(3cos10°i —3sin10° j) = —15sin10°i — 15cos 10° j
= —2.604i—14.772}j
and
ap, =2, tOX(OXr,, ) +oxr,,

a, = (-66.51+54.3]) =
S
la,|=85.92
S

Alternate solution: The bar is rotating about a fixed point. Thus any point on the bar moves on
a circular arc about the point of support. The particle P has two components of acceleration,
one directed between P and O (the normal acceleration), and one tangent to the path of P
whose direction is determined using the right hand rule (the tangential component).

The component normal to the path of P is

rad m
2
S

a,=3m(5— ) =75

s
and is directed between P and O. The tangential acceleration is

o= (3m)(14r:‘—f) =27

The normal and tangential components of acceleration are illustrated on the diagram below.

42misec?
N
75m/sec?
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Problem 1.3 illustrates the use of the relative acceleration equation of rigid body kinetics.

1.4 Att =0, a particle of mass 1.2 kg is traveling with a speed of 10 m/s that is increasing
at a rate of 0.5 m/s”. The local radius of curvature at this instant is 50 m. After the particle
travels 100 m, the radius of curvature of the particle's path is 50 m.

(a) What is the speed of the particle after it travels 100 m?

(b) What is the magnitude of the particle’s acceleration after it travels 100 m?
(c) How long does it take the particle to travel 100 m?

(d) What is the external force acting on the particle after it travels 100 m?

Given: m = 1.2 kg, v(t=0) = 10 m/s, dv/dt= 0.5 m/s%, and r =25 m when s = 100 m
Find: (a) v when s = 100 m, (b) a when s =3 m, (¢) t when s =3 m

Solution: Let s(t) be the displacement of the particle, measured from t = 0. The particle’s
velocity is
tdy 0
v(t)=|—dt+v(0)=10.5dr=0.5¢+10
()= [~ de+v(0) j
By definition v=ds/dt. Thus the displacement of the particle is obtained as

s(t) = [vdt+s(0) = [(0.5¢+10)dt = 0.25¢* + 10
0 0

When s = 100 m,

100 m = 0.25¢> +10t = ¢ =8.28 s

(a) The velocity when s = 100 m is
v=0.5(8.28)+10 =14.14 m/s

(b) Since the particle is traveling along a curved path, its acceleration has two components:
a tangential component equal to the rate of change of the velocity

a, = % =0.5m/s’

and a normal component directed toward the center of curvature

2 2
a, :V—z—(14'14 m/s) =4.00 m/s’
r 50 m

The magnitude of the acceleration at this instant is
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la| = yJa? +a? =(0.5m/s>) +(4.00 m/s*)?
|a| =4.03 m/s’

(c) The time for the particle to travel 100 m is previously calculated as t=8.28 s
(d) The external force equation written in terms of magnitudes is

> IF| =mlal

which upon application to the particle gives
m
ZIFI = (1.2 kg) (4.03 5—2) — 4.84N

Problem 1.4 illustrates the kinematics of a particle traveling along a curved path.

1.5 The machine of Figure P1.15 has a vertical displacement, Y
x(¢). The machine has component which rotates with a constant ‘\\
angular speed, @. The center of mass of the rotating component .
1s a distance e from its axis of rotation. The center of mass of the
rotating component is as shown at # = 0. Determine the vertical ) ‘ 4
component of the acceleration of the rotating component.

Given: e, ®, x (t) %
Find: a,

Solution: The particle of interest is on a component that moves /mm mm

relative to the machine. From the relative acceleration equation,
a;=a, +ag,,
where
a, =—i(1)j

and

a,,, =ew’ (- cos éh—sin )
Since the angular velocity of the rotating component is constant and 6 = 0 when t =0,

0 =owt

Hence the vertical acceleration of the center of mass of the rotating component is

9
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a,=- %(t)-ew’ sin ot

Problem 1.5 illustrates application of the relative acceleration equation. Vibrations of
machines subject to a rotating unbalance are considered in Chapter 4.

1.6 The rotor of Figure P1.6 consists of a disk mounted
on a shaft. Unfortunately, the disk is unbalanced, and X B4
the center of mass is a distance e from the center of the
shaft. As the disk rotates, this causes a phenomena
called “whirl”, where the disk bows. Let » be the o
instantaneous distance from the center of the shaftto
the original axis of the shaft and 6 be the angle made E SR N [ E
by a given radius with the horizontal. Determine the T

acceleration of the mass center of the disk.

(b)

Given: e, r
Find: a

Solution: The position vector from the origin to the center of the disk is ri,. where r varies
with time. The mass center moves in a circular path about the center of the disk. The
relative acceleration equation gives

a,=a,+axri, +wx (0 xri,) +#i, + 20 X ri,
a, = (F —r0?)i, + (r6 + 270)ig
The acceleration of the mass center is then
a=(#-r0%)i, + (rf + 270)iy — ew?[cos(wt — 0) i, + sin(wt — 0) ig]

Problem 1.6 illustrates application of the relative acceleration equation.

1.7 A 2 ton truck is traveling down an
icy, 10° hill at 50 mph when the driver
sees a car stalled at the bottom of the
hill 250 ft away. As soon as he sees the
stalled car, the driver applies his brakes,
but due to the icy conditions, a braking

force of only 2000 N is generated. Does
the truck stop before hitting the car?

Given: W =4000 Ib., 8= 10°, d =250 ft., F, = 2000 N = 449.6 b,
Vo = 50 mph = 73.33 ft/sec
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Find: v = 0 before x = 250 ft.

Solution: Application of Newton’s Law to the free body diagram of the truck at an

arbitrary instant
W
C
Z; /2% - Z; ;’,wa
. ° g
R

N
EXTERNAL FORCES EFFECTIVE FORCES

(Z r, )exL - (Z F )ejf.

. w
—F,+Wsinf = —a
g

F
a= g(—Wb + sinﬁj

a=322 11 (— 44961 sinlooj

sec 4000 Ib
a=1973 1
S€C

Since the acceleration is constant, the velocity and displacement of the truck are
v=at+v,=1973t +73.33

2

t
X= aE + vt =0.986¢ +73.33¢
The acceleration is positive thus the vehicle speeds up as it travels down the incline. The
truck does not stop before hitting the car.

Problem 1.7 illustrates application of Newton’s Law to a particle and kinematics of
constant acceleration.

1.8 The contour of a bumpy road is approximated by y(x) = 0.03 sin(0.125x) m. What is the
amplitude of the vertical acceleration of the wheels of an automobile as it travels over this
road at a constant horizontal speed of 40 m/s?
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Given: y(x) = 0.03sin(0.125x) m, v = 40 m/s
Find: A

Solution: Since the vehicle is traveling at a constant horizontal speed its horizontal distance
traveled in a time t is x = v£. Thus the vertical displacement of the vehicle is

y(t) = 0.03sin[0.125(407)] = 0.03sin(5¢) m
The vertical velocity and acceleration of the vehicle are calculated as

v(t) = 0.03(5)cos(5¢) = 0.15cos(5¢) m/s

a(t) = —0.15(5)sin(5¢) = —0.75sin(5¢) m/s
Thus the amplitude of acceleration is A=0.75 m/s”.

Problem 1.8 illustrates the relationship between displacement, velocity, and acceleration
for the motion of a particle.

1.9 The helicopter of Figure P1.9 has a horizontal speed of 110 ft/s and a horizontal
acceleration of 3.1 ft/s>. The main blades rotate at a constant speed of 135 rpm. At the
instant shown, determine the velocity and acceleration of particle 4.

Given: v, = 110 ft/s, a,=3ft/s>, ® = 135 rpm = 14.1 rad/s, r = 2.1 ft
Find: vy aa
Solution: Construct a x-y coordinate system in the horizontal plane
As illustrated. Using this coordinate system
v =-110i ft/s, a = -3i fi/s’

The position vector of A relative to the helicopter at this instant is

r,,, = rlcos(z/4)i—sin(z/4)j]=1.48i—1.48]
The relative velocity equation is used to determine the velocity of particle A as

V, =V, takxr,,
v, =—110i +14.1k x (1.48i —1.48j)
v, =—89.1i +20.9j ft/s

The relative acceleration equation is used to determine the acceleration of particle A as
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a, =a, +akxr,, +okx(okxr,,,)
a, =-3.1i+14.1k x(20.87i + 20.87}j)
a, =—297.4i+294.6j ft/s’

Problem 1.9 illustrates the use of the relative velocity and relative acceleration equations.

1.10 For the system shown in Figure P1.10, ____N"Zf’m sin(30t + )

the angular displacement of the thin disk 1s 4 i ¥ Rigid link 0
given by 8(t) = 0.03sin (301: + %) rad. The Lo T V

disk rolls without slipping on the surface. - - e
Determine the following as functions of time. —y /ﬁ‘l*. o
(a) The acceleration of the center of the disk. radius 10 cm s

= 20cm |-

(b) The acceleration of the point of contact ,
between the disk and the surface. (c) The
angular acceleration of the bar. (d) The

vertical displacement of the block. (Hint:
Assume small angular oscillations ¢ of the >
bar. Thensing = ¢.)

Given: 8(t),r; =0.1m,{=03m,d =0.2m
Find: (a) a; (b) a, (¢) a (d) x

Solution: (a) The angular acceleration of the disk is

n) r:zd

. T
d(t) = —(30)20.03 sin (30t + Z) = —27sin (30t ty

Since the disk rolls without slip the acceleration of the mass center is

) my\ rad ) T\ M
ag =ra = (0.1m) (—27 sin (30t + Z) S—2> = —2.7sin (30t + Z) 2

(b) Since the disk rolls without slip the horizontal acceleration of the point of contact is
zero. The vertical acceleration is 782 towards the center

a. = (0.1 m) [(30)(0.03) cos (30t + %) ?]Zi

13
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2

= 0.081 cos (30t +%) =1

(c) Assuming small ¢ the angular displacement of the link is #¢p = x,; or
_ ¢ -27sin(306+7)
¢ =% 03m

$ = —9sin (30t +%) st

(d) The displacement of the mass center of the block is x = d¢ or

9 . T . 4
x = (0.2 )Wsm (30t + Z) = 2 sin (30t + Z) mm
Problem 1.10 illustrates angular acceleration and acceleration of a body rolling without
slip.

= 10em

1.11 The velocity of the block of the system ra=10cm
of Figure P1.11 is y = 0.02sin20tm/s % -
downward. (a) What is the clockwise W (
angular displacement of the pulley? (b) What O e e e e e

is the displacement of the cart?

. .

Given: y, 7y =0.1m,, = 0.3 m
Find: (a) 8(t) (b) x(t)

Solution: the displacement of the block is

v=0.02sin20¢ m/s

y(t) = f}'/dt = 0.001(1 — cos20t) m

(a) The angular displacement of the pulley is

0.001(1 — cos 20t) m m
g =2 = ( ) = 3.33 x 107%(1 — cos 20t) rad
o) 0.3 m

(b) The displacement of the cart is

T 0.1m
x = —1y =——10.001(1 — cos 20t) m] = 3.33 x 10~*(1 — cos 20t) m
7y 0.3m

Problem 1.11 illustrates velocity and kinematics.
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1.12 A 60-1b block is connected by an inextensible cable through the pulley to the fixed
surface, as shown in Figure P1.12. A 40-1b weight is attached to the pulley, which is free to

b\\\‘o

move vertically. A force of magnitude P = 100(1+ ¢”) Ib
tows the block. The system is released from rest at £ = 0.

(a) What is the acceleration of the 60 Ib block as a
function of time?

(b) How far does the block travel up the incline before it
reaches a velocity of 2 ft/sec?

Given: W = 60 lbs, W, =40 Ibs, P = 100(1+e™) Ib, =
0.3, @ =45°

Find: a(t), x(v =2 ft/sec)

Solution: Let x be the distance the block travels from t =
0. Let y be the vertical distance traveled by the pulley
from t = 0. The total length of the cable connecting the
block, the pulley and the surface is constant as the block
moves up the incline. Thus, referring to the diagrams
below. Att=0, /=a+ b +c. Atan arbitrary time, /= a
+x+b-ytc—y=a+b+c+x-2y. Hencey = x/2.

P

401b

ARBITRARY TIME

Free body diagrams of the blocks are shown at an arbitrary instant of time.

15
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1
: \
\
\
@‘E\
R
x:

Wy o
W3 g y
EXTERNAL FORCES EFFECTIVE FORCES

From the free body diagrams of the pulley

(ZF )ext.: (ZF )eﬂ.

2T —m,g=m,y (1)
m ..
r==ive)

Summation of forces in the direction normal to the incline for the block yields
N=m,gcosb (2)

Summing forces in the direction along the incline on the block

(ZF )ext. - (ZF )eff'-

. ) G)
—T+P-F—-m,gsin@=m,X
Noting that F = uN and using egs. (1) and (2) in eq. (3) gives
—%+P—ym1gcosé’—m1gsin9
.2
X= “4)
m,
m, +—=
4
Substituting given values leads to
¥=11.42 + 46.0¢™’ iz
S

The velocity is calculated from

16
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O ey <

dv = !(1 1.42 + 46.9¢™ ) dt (5)

v =46.0 +11.42t —46.0¢”"
Setting v = 2ft/sec in eq. (5) and solving the resulting equation for t by trial and error

reveals that it takes 0.0354 sec for the velocity to reach 2 ft/sec. The displacement from the
initial position is calculated from

X t
dx = | (46.0+11.42t-46.0e”" )d
;')‘ X {( + t e ) t (6)

x()=—46.0+46.0t + 5.71¢* + 46.0¢”"
Setting t = 0.0354 sec in eq.(6), leads to
x =0.0356 ft
Problem 1.12 illustrates the application of Newton’s Law to a particle, the kinematics of
pulley systems, and relationships between acceleration, velocity, and displacement. Note

that the time required to attain a velocity of 2 ft/sec could have been attained using impulse
and momentum.

1.13 Repeat Problem 1.12 for a force of P =100z N. g | -

Given: W; =60 lbs, W, =40 lbs, P =100t Ibs, £=10.3, € =
45°

Find: a(t), x(v =2 ft/sec)

Solution: Let x be the distance the block travels from t = 0.
Let y be the vertical distance traveled by the pulley from t =
0. The total length of the cable connecting the block, the
pulley and the surface is constant as the block moves up the
incline. Thus, referring to the diagrams below. Att=0, /=
a+b+c. Atanarbitrary time, /=a+x+b—-y+c—-y=a  wun
+b+c+x—2y. Hence y = x/2.

17
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w, .
W, —Y

9
EXTERNAL FORCES EFFECTIVE FORCES

From the free body diagrams of the pulley

(ZF )ext. = (Z r )ejj".

2T —m,g=m,y (1)
m .
r==r(i+g)

Summation of forces in the direction normal to the incline for the block yields
N =m,gcosf 2)

Summing forces in the direction along the incline on the block

Xr)., -&F),

~T+P—-F—-m,gsin@ =m,x

€)

Noting that F = xN and using egs.(1) and (2) in eq.(3) gives

18
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_%+P—ﬂm1gcosﬁ—m1gsin9
o 2 “4)
m,
m, +—=
4

Substituting given values leads to

X =36.79t -34.57

Note that the acceleration is initially negative, then becomes positive.

dv =|136.79t —34.57)dt
fr-fourm-sas

v=18.40t> —34.57¢

Setting v = 2 ft/sec in eq.(5) and solving the resulting quadratic equation reveals that it
takes 2.07 sec for the velocity to reach 2 ft/sec. The displacement from the initial position
is calculated from

jdx =j (18.4> —34.57¢)dt (6)

o o

x(t)=6.13¢> —=17.28¢°
x(2.07sec)=-19.76ft

Problem 1.13 illustrates the application of Newton’s Law to a particle, the kinematics of
pulley systems, and relationships between acceleration, velocity, and displacement. Note
that the time required to attain a velocity of 2 ft/sec could have been attained using impulse
and momentum.

v, o

1.14 Figure P1.14 shows a schematic diagram of a one-cylinder /e
reciprocating one-cylinder engine. If at the instant time shown the '
piston has a velocity v and an acceleration a, determine (a) the

angular velocity of the crank and 1/
(b) the angular acceleration of the s
crapk in terms of v, a, the crank ; AN
radius 7, the connecting rod o * A
length ¢, and the crank angle 6. c0s + ¢ cos 1 \. ’/u,,
Given:r, ¢, 6,v,a 0 r

r /
Find: OAB

19
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Solution: (a) From the law of sines

ro !
sing siné

or

sin ¢ =%sin6’ (1)

Then from trigonometry

cos¢g =+/1—sin’ ¢

= |1 —(%sin 9) )

Using the relative velocity equation,
Vg =Vt 0 ypXTy,

= a)Aka(— rsinéi +rcos 6?])

=—rw, ; costi —rw , ,sindj
and

Ve =V =V + Qpc Xl
=V, + a)BCkx(ﬁ sin @i+ cos ¢])
=(~rw ,sin@+Lw,.sing)j —(ro,, cos@+Lw,. cosg)i

The x component yields

r cos
Ope =——@ g —— 3
Be ¢ " cos ¢ ®)
which when substituted into the y component leads to
D45 =— - “4)

r(sin @ + cos @ tan @)

(b)The relative acceleration equations give

20
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ap =, + 0 Xy, + wABx(a)AerB/A)
_ 2 - aF . 2 =
= (— ra,, cosd+rwy, sm@)l +(—raAB sin@ —rw;, cos@)]
and
Ac = =0y + 0pcXle)p T OpcXWpcXTcp
= (—raAB cos@ —rw’, sin@ — (e, cos¢— L, sin¢)7
+ (— ra ., sin@+rw’, cos@+ Lo, sing— Lo, cos¢)j

The x component is used to determine

1
lcos ¢

2 : 2 :
Ope =— (ra)AB sin@+ra,,cosd+ Lo sm¢)

Which when used in the y component leads to

_ a—rw,;c08 0+ (w;.cos ¢ —rw,sing tang + (o sing tang
7(sin @ + cos @ tan ¢)

)

A=

Equation (5) is used to determine the angular acceleration of the crank using eqgs.(1) - (4).

Problem 1.14 illustrates application of the relative velocity and relative acceleration
equations for rigid body kinematics.

36kg

1.15 Determine the reactions at A for the
two-link mechanism of Figure P1.15. The
roller at C rolls on a frictionless surface.

—— 2.6 m/fs

- 1.4 m/s?

Given: 0=30° Lag=2m, Lgc =3 m, mag =2.4 kg, mpc=3.6 kg, vc =2.6 m/sec, ac =
-1.4 m/sec?

Find: As, Ay
Solution : From the law of sines

sinf _sing
LBC LAB

sin ¢ = ]Lﬂsin 0 =0.333

BC

From trigonometry

21
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cosg =+/1—sin’ ¢ =0.943

The relative position vectors are

Py = Ly(cos 6 +sinG ) =1.737 + jm

oy = Lyc(cos g —sindj )= 2.837 = jm
Using the relative velocity equation between two particles on a rigid body,

V, =V, +ow,,Kkxr,,
Vy=—0,i+1.730 ;]
Ve = Ve + 0p KXY
2.6i=(-w,, + 0, )i+ (1.730,, +2.830,.)j

Equating like components from both sides leads to
1.73@ 5 +2.830,. =0
W,y Wy =2.6
Simultaneous solution of the above equations leads to

®,, = —1.61%, @y = 0.986%

Use of the relative acceleration equation between two particles on a rigid body,
a; =a, +a,kxr,  + a)Aka(a)AkarB/A)
a,=(-a,, —448)i+(1.73a,, —2.59)j=

s

ac =a, +apkxr ,; + a)BCkX(a)BCerC/B)
—1di=(—a,,+ay +723)i+(.72a,, +2.83a,. —1.62)]

Equating like components from both sides leads to
1.720 p + 2.83ay. = 1.62

-z t+ay. =-8.63

Simultaneous solution of the above equations leads to

Q= 5.72r:‘—2d,aBC ~291™d

S

The relative acceleration equations are used to calculate the accelerations of the mass
centers of the links as

22
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a,, =—5.00i+ 3.65j832
a,, =—13.64i + 3.66j822

Free body diagrams of the two bar linkage at this instant of time are shown below

Mg 9 Mc 9 ’
Ax I
Ay

EXTERNAL FORCES EFFECTIVE FORCES

Summing moments about C

(Eme), =Emc),

Ay(LAB cosO@+ L, cos¢)—mABg[L;B cosO@+ L, cos¢)—chgL—§Ccos¢

= = - L, . - Ly .
=—1 80 g — I BcOy +m pa., %smﬂjt MGy %sm¢
+ma [ﬁcoséwL cos¢}+m a ﬁcos;ﬁ
AB ™ V4B 2 BC BC % VsC P
Noting that
T = LmABLZAB =0.8kg-m?, /s = imBCLfBC =2.7kg-m’
12 12
and substituting given and calculated values and solving for 4, leads to

A, =2849N

Summing forces in the horizontal direction

Qe =L F ey

Ax = mABExAB + WlBCaJcBC
Substituting given and calculated values leads to

A =-6132N
23

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Chapter 1: Introduction

Problem 1.15 illustrates (a) application of the relative velocity equation for a linkage, (b)
application of the relative acceleration equation for a linkage, and (c) application of
Newton’s laws to a system of rigid bodies. This problem is a good illustration of the
effectiveness of the effective force method of application of Newton’s Laws. Use of this
method allows a free body diagram of the entire linkage to be drawn and used to solve for
the unknown reactions. Application of Newton’s Laws to a single rigid body exposes the
reactions in the pin connection at B and complicates the solution.

4 kg-m? 4 kg-m?
1.16 Determine the angular acceleration of - = :
each of the disks in Figure P1.16. @“ /Q;”‘\(

Given: Disk of Ip=4 kg-mz, r = 60 cm with
(a) m; = 30 kg and m, =20 kg blocks
attached or (b) F; =270 N and F, = 180 N
forces attached.

20 kg 30kg 180 N 270N

Find: o
Solution:

(a) Free body diagrams of the disk and the blocks are shown below

Mpg lpa
el
/
J 1 ) I
m,g m,g m

m,ro ro

EXTERNAL FORCES EFFECTIVE FORCES

Summing moments about the center of the disk

(EMo)=E Moy

— 2 2
mi&-m:& =1, tmrd+tmra

o = (= ma2)gr . =2.68@
Iyt (mitm)r s

(b) Free body diagrams of the disk are shown below

24
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Mpg

F F

2
EXTERNAL FORCES EFFECTIVE FORCES

Summing moments about the center of the disk

(z MO)@)CL - (ZMO)eﬁ'

Fir-Fr=J,a
_(EoR)_ 5 srd
I, E

Problem 1.16 illustrates application of Newton's Laws to systems of rigid bodies. It also
illustrates the difference between an applied force and a mass.

1.17 Determine the reactions at the pin support . S

and the applied moment if the bar of Figure A5 ] ”
P1.17 has a mass of 50 g. " [ i S
~—/ ) | *ﬂ': 14 I'leﬂ'lhz
3 ;r;\J I/
Given: a = 14 rad/sec’, ® = -5 rad/sec, m = 50 @=5 radls
kg
L=4m,0 =10°

Find: M, Oy, Oy

Solution: The bar's centroidal moment of inertia of the bar

- 1 1
I=—mJ’=—(50ke)(4m)’ = 66.67 kg - m>
12mL 12( g)(4m) g-m

Free body diagrams of the bar at this instant are shown below

25
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mL .2 mL o

4 4
o 7 :XT

Oy mg

EXTERNAL FORCES EFFECTIVE FORCES

Summing moments about O
(ZMO )ext, = (ZMO )e//

M—mg£cos(9=ioz+m£0¢£
4 4 4

— LZ L
M=(l+m=—)a+mg—cosb
(Im7cJotme,

2
~ [66.67 kg - m*+ > kgl)(4m) 144,
6 SeC

(50kg)(9.81 - )(4 m)

+ 4560 =2120N-m

Summing forces in the horizontal direction
(XF: ) =(XFx )y

Oy = -m£w2c0s0+m£asin0
4 4

= -—(50 ke)(4m) (-5 @)2 cos10°
4 S

+(50 kg)4Tm(14@)sinlo° —_1110N
S

Summing forces in the vertical direction

26
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(ZFy)extA:(ZFy)eff
0,-mg = mgafsjneﬂn%acos@

_ (50kg)(4 m)

rad
y 4 """)2

(-5 sinlO°+M(l4 —)cos10°
m
+(50 kg)(9.81?) =1400 N

Problem 1.17 illustrates application of Newton's Laws to rigid bodies.

1.18 The disk of Figure P1.18 rolls without slipping. Assume if P = 18 N. (a) Determine
the acceleration of the mass center of the disk. (b) Determine the angular acceleration of

the disk. .

/Z[Jg_m\/ :
Given: m=18kg, P=18 N, r=20 cm \ S
Find: a

STTTTTTITTT T T T TTTTTTTIT

Solution: (a) If the disk rolls without slip then its angular
acceleration is related to the acceleration of the mass center by

a=ra

Free- body diagrams of the disk at an arbitrary instant are shown below

mg

EXTERNAL FORCES EFFECTIVE FORCES

Summing moments about the contact point

27
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(ZMC)ext. :(ZMC)ejf

Pr=Ia+mar

a _
Pr=—mr*=+mar

r
2P _ 2(18N) _ 6.67 =
3m  3(1.8kg) s
(b) The angular acceleration of the disk is
a=2=3335/8
r

Problem 1.18 illustrates application of Newton’s Laws to a rigid body.

1.8 kg

1.19 The coefficient of friction between the disk of Figure Gty /
P1.18 and the surface is 0.12. What is the largest force that : "
can be applied such that the disk rolls without slipping?

B——r

[TTTTTTITTT I T T TTTTTTTiT]

Given: m= 1.8 kg, r=20 cm, = 0.12
Find: Pp,y for no slip

Solution: Free body diagrams of the disk at an arbitrary instant are shown below.

mg

\Ii(x
P — ma
c T < F C
N
EXTERNAL FORCES  EFFECTIVE FORCES

Summing moments about the contact point,

QM) = M),y

Pr=1Ia+mar

(1)

If the disk rolls without slip then

AR

2

28
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Substitution of eq.(2) into eq.(1) leads to
2P

3m

3)

a=

Summing moments about the mass center of the disk

(Z Mg )ext. = (Z Mg )eff:

The maximum allowable friction force is umg, thus in order for the no slip assumption to
be valid,

Le
3 Hmg

P<3umg=636N

Problem 1.19 illustrates application of Newton’s Laws to a rigid body dynamics problem
and rolling friction.

1.20 The coefficient of friction between the disk of Figure se / 1.8 kg
P1.18 and the surface is 0.12. If P =22 N, what are the P G
following? (a) Acceleration of the mass center. (b) Angular .j' — .p

acceleration of the disk.

/ rmf;f}}'}' ;m'?};frf 77777
Given:r=20cm,m=1.8kg, P=15N, u=0.12
Find: a, o

Solution: (a) Free body diagrams of the disk at an arbitrary instant of time are shown below

mg 1/2mr2a
P = ma
OI<7 F (e}
N

EXTERNAL FORCES EFFECTIVE FORCES

Summing moments about the contact point between the disk and the surface
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(ZMO)exL - (zﬁlo)eﬁr

_ 1 (1)
Pr=mar+—mr-a
2
Summing moments about the mass center
(Z MG )ext. - (Z MG )eff
2)

Fr:imrza
2

First assume the disk rolls without slipping. Then the velocity and the acceleration of the
contact point are zero, which in turn implies that @ = ra.. Substituting into eq.(1) yields
2P rad

a=——=278—
3mr 52

If the assumption of no slip is valid, then the friction force developed is less than the
maximum allowable friction force,

F .. =wumg=212N
The friction force assuming no slip is calculated using eq.(2),

F= %mra = %(1.8 kg)0.2 m)(27.8 @j =50N
S

(b) Thus the disk rolls and slides. The friction force takes on its maximum permissible value
of 2.12 N. The velocity of the contact point is not zero and is independent of the velocity of
the mass center implying that there is no kinematic relation between the angular acceleration
and the acceleration of the mass center. Setting F =2.12 N in eq.(2) leads to

2F  2(2.12N) rad
=—=—"" 7 11.8—
mr (1.8kg)0.2m) %
Problem 1.20 illustrates application of Newton's Law to a rolling rigid body. Since it is not
known whether the disk slides while rolling, an assumption of no slip is made. The

assumption is proved false by checking the friction force. If an assumption of rolling and
slipping is first made, there is no convenient way to check the assumption.

1.21 The 3 kg block of Figure P1.21 is displaced 10 mm downward and then released from
rest. (a) What is the maximum velocity attained by the 3-kg block? (b) What is the
maximum angular velocity attained by the disk?

30
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0.25 kg - m?

/zr;?\/
/Nj

Given: m; =3 kg, my=15 kg,
Ir=0.25 kg-mz, r=20cm,

K=4000 N/m, 6 = 10 mm

Find: %, 45, ®max ‘ 5kg 3kg
Solution: Since gravity and spring forces are the only

external forces doing work, energy is conserved. Let %
position 1 refer to the position when the 3 kg block is il o
displaced 10 mm. Let position 2 refer to the position s

when the velocity is a maximum. Then
T, tVi=T:%V; (1)

The spring is stretched when the system is in equilibrium, due to the gravity of the blocks.
Thus when the spring is in equilibrium, it has a non-zero potential energy. However, when the
system is in equilibrium its total energy is zero. Thus the potential energy due to gravity
balances with the potential energy due to the static deflection in the spring. Neither must be
included in the analysis. With this in mind

T,=0
1,
V,=0
] 2 2 ] 2 2 ] 2 2
Tzzzmzr a)z+31’l’lzl’ 0)2+31P w>= 0.285 w3

Substitution into eq.(1) leads to

0= O, = 0.837 4
S

Then
Xmax = (0.2 m)(0.837 rad/s) = 0.167 m/s

Problem 1.21 illustrates application of conservation of energy to a system of rigid bodies. It
also illustrates that the potential energy present in a spring when a system is in equilibrium
will balance with potential energies of the gravity forces that caused the static deflection.
Neither must be included in a work-energy analysis as they cancel with each other.
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1.22 The center of the thin disk of Figure P1.22 is 2 20000Nim / / = B
displaced 15 mm and released. What is the maximum VW ) m=2ke
velocity attained by the disk, assuming no slipping . SO i

between the disk and the surface?

Given: m =2 kg, r =25 cm, k = 20,000 N/m, & = 15 mm, no slip
Find: vipax

Solution: Since the disk rolls without slipping, the velocity of the point of contact between the
disk and the surface is zero, and hence the friction force does no work. Thus the spring force
is the only external force which does work. The system is conservative. Let position 1 refer to
the initial position of the system when the center is displaced 15 mm. Let position 2 refer to
the position when the center attains its maximum velocity. Then from conservation of energy

T, TV =T,tV, (1)
where

T,=0

vi=Lks = l(20000 Ny0.015m )’ =2.25N"m
2 2 m

1 ., 1,1 5 0,
=—mv-  +—(—mr
T: > 2(2 )3
Since the disk rolls without slip
v, =1,
and
T> —mﬁj

Substituting into eq.(1) leads to

y,=v = 4(2.25N-m) _ | ym
‘ 3(2 kg) s

Problem 1.22 illustrates application of conservation of energy to a system involving a rigid
body. The time history of motion for this system is examined in Chapter 4.

32
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1.23 The block of Figure P1.23 is given a displacement & and
then released. (a) What is the minimum value of 6 such that m
motion ensues? (b) What is the minimum value of o such that

the block returns to its equilibrium position without stopping? B

I

Given: m, k
Find: (a) value of & for motion, (b) value of & such that block returns to equilibrium

Solution: (a) In order for motion to occur when the block is released, the spring force must
be larger than the friction force. That is

ko > umg

5>%
k

(b) In order for the block to return to equilibrium before motion ceases, the initial potential
energy stored in the spring must not be dissipated due to friction before the block returns to
equilibrium. Suppose the block is given a displacement just sufficient to return it to
equilibrium before motion ceases. Let position lcorrespond to the initial position and
position 2 correspond to the position when the block returns to its equilibrium position.
The principle of work energy states

I, +V,+U,,=T,+V,

Since the system is released from rest, T; = 0. Since the displacement is just sufficient to
return the block to equilibrium, it has a zero velocity when it returns to equilibrium and T,
= (. Since the block is in its equilibrium position in position 2, V, = 0. The work done by
non-conservative forces is the work done by the friction force. Thus

§k52 —umgd =0

5o 2Hmg
k

Problem 1.23 illustrates motion of a mass-spring system when dry fiction is present. This
problem is considered again in Chapter 3 in the discussion of Coulomb damping.

1.24 The five-blade ceiling fan of Figure P1.24 operates at 60 rpm. The distance between
the mass center of a blade and the axis of rotation is 0.35 m. What is the total kinetic
energy?
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Given: ® = 60 rpm, ceiling fan shown
Find: T

Solution: The rotational speed is
converted to rad/sec by

:60rev 27t rad 1 min 6283 @

1s 1rev 60 sec sec

The velocity of the mass center of the motor

7=(0.013m)0=0.0822
S

The kinetic energy of the motor is

T = lmvz +ll_a)2
2 2

m

S
=101.5 N-m

The velocity of the mass center of each blade is
v =(0.35 m)a)=2.20?
The kinetic energy of each blade is
T, :%mﬁz +%I_ o’

2
- %(1.21@)(2.203) + %(0.96kg-m2 )(6.283
S

=21.88 N-m

The total kinetic energy of the ceiling fan is

T=T,+5T,=101.5 N-m+5(21.88N-m)

=2109N -m

34

@f

T——— m=121kg

" Blade

13 mm

Motor

2 2
E %(4.7 kg)(0.082 Ej +%(5. 14kg —m’ )(6.283 @j
S

=096 kg - m?

m=47kg
I=514kg -m?
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Problem 1.24 illustrates calculation of kinetic energy of a rigid body.

1.25 The U-tube manometer shown in Figure
P1.25 rotates about axis A-A4 at a speed of 40
rad/sec. At the instant shown, the column of
liquid moves with a speed of 20 m/sec
relative to the manometer. Calculate the total
kinetic energy of the column of liquid in the
manometer.

Given: v =20 m/sec, ® = 40 rad/sec, A =
0.0003 m*, S.G.=1.4

Find: T

Solution: The column of liquid is broken into three
sections. The velocity of the fluid particles
comprising each section is

vV z=Vi+rok

Vpe=Vi+raok

Vp=Vj— 0.6 ok

i
20 ¢ -
]

A v=20 m/s
' adrs Specific gravity = 1.4
\ )
: Area=3x 10* m?
100 cm
'
60 cm -
j
A Z o 3
74 v
“ TdmCD
am g dmge
- | | |
LIS IS,
A B _ C

Consider a differential mass, defined in each part of the manometer as shown. The kinetic

energy of the differential mass is

dT=l| v|2dm
2

The kinetic energy of the particles in each section is obtained by integrating dT over the

liquid in that section.

Section AB: dmap = pAdr

0.2m

T,;= j épA(v2+a)2 rz)a’r
0

:é pA(0.2v) +0.00267 )
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Section BC: dmpc= pAdr

0.6m

Ty = I épA(vZ+a)2 rz)dr
0
=§pA(0.6v2+0.072a>2)

Section CD: dm¢p = pAdz

T.p= ] jmé pA( + 0.36 0 )dz

0

=§pA(v2+0.36 o)

The total kinetic energy is

I'=T,,+T)+T

=%pA(l.8v2+0.435 o)

m S

:%(1 4) (1000 k—%} (0.0003m?) {1.8(20ET +0.435(

=297.4 N-m

]

Problem 1.25 illustrates the kinetic energy calculation of a column of liquid in a
manometer. The vibrations of the column of liquid in a manometer rotating about an axis
other than an axis through its center are nonlinear if the rotational speed is large enough.
The differential equations are formulated using energy methods and a kinetic energy

calculation similar to that developed in the solution of this problem.

1.26 The displacement function for a simply

X

>
=
supported beam of Figure P1.26 is [ ]

X El
— 2
y(x,t) = csm( T )cos (n AL t>

N

E =200 x 10* N/m?
I =1.73% 107 m*
p = 7400 kg/m’
A=16x10*m?

where ¢ = 0.003 m and ¢ is in seconds. Determine the kinetic energy of the beam.
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Given: y(x,t)
Find: T
Solution: The kinetic energy of the beam is

2 2

1 (L a2 1 (L X\ 12 El EI
S - - _ N faied 2 2
T_ZfopA(at) dx-zf0 pA[csm(L)] s DAL sinm DAL dx

= %czn“% sin w2 pii‘* LL [sin (E)]Z dx

2
1 El ’ El

— Z 24 2

_ZC T I3 sinm pAL4]

Problem 1.26 illustrates the calculation of the kinetic energy of a continuous system.

LI
1.27 The block of Figure P1.27 is displaced 1.5 cm from equilibrium

and released. )
12,000 N/m

(a) What is the maximum velocity attained by the block?
(b) What is the acceleration of the block immediately after it is

65 kg
released? ‘ ki

Given: m = 65 kg, k=12,000 N/m, xo= 1.5 cm
Find: (a) vimax (b) a9

Solution: When the system is in equilibrium the spring is stretched and has a static
deflection A. Summing forces on the free-body diagram of the system’s equilibrium
position
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> F=0

mg —kA =0
2
A8 _ (65kg)(9.81m/s”) - 0.053m
k 12000 N/m

(a) Let position O refer to the initial position of the system. Let position 1 refer to the
system when the velocity of the block is a maximum. Since the system is is released
from rest in position 0, To=0. The total stretching in the spring in position 0 is

0y =%, +A=0.015m+0.053m =0.068 m

If the equilibrium plane is chosen as the datum plane for referencing the potential energy
due to gravity the potential energy in position 0 is

Vy =—mgx, + %ké'oz

V, =—(65kg)(9.81m/s> ) + %(12000 N/m)(0.068 m)>
V,=18.18N-m

Since all forces are conservative, application of conservation of energy is applied leading
to

18.18N-m =T, +7,

The maximum kinetic energy occurs when the potential energy is a minimum, which
occurs when the system passes through its equilibrium position,

V, = %k& = %(12000 N/m)(0.053m)* =16.85N-m

Hence

max

18.18N-m:16.85N-m+%mv2

Vo =0.202m/s

(b) Application of Newton’s law to the free-body diagram of the block in its initial position
leads to
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k
a :g_;(xo +A)

a, =9.81m/s? —12000NmM 6 e m)
65 kg

a, =-2.74m/s’

Problem 1.27 illustrates (a) application of conservation of energy to a particle and (b)
application of Newton’s law to the free-body diagram of a particle.

1.28 The slender rod of Figure P1.28 is
released from the horizontal position when

the spring attached at 4 is stretched 10 mm 1200 N/m

and the spring attached at B is unstretched. = R
(a) What is the angular acceleration of the ) M- E
bar immediately after it is released? (b) : * p— 1\,

What is the maximum angular velocity .
attained by the bar? = I m -

Given: m=1.2kg, L =1m, ;=10 mm, k; = 1200 N/m, k, = 1000 N/m
Flnd: (a) Ylnax,, (b) mmax.

Solution: Consider first the system immediately after release.

_Ja
“(151 - \\
| \
— 8 ) = ( )
A ) - (k)
v mL,
I'Ng 2
mg
EXTERNAL FORCES EFFECTIVE FORCES

Summing moments about B
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(Z M, )ext. - (Z M, )e./j’.

—k151L+mg£=m—a
2 3 il
3 y

ai(Fhe)

2_y2_.¢
1520 h

S

Hence a is clockwise and the bar moves upward. Now consider the geometry of the bar
when it has moved a distance y upward. The horizontal displacement of B is

S, =L’ -y’

(b) Let o be the angular velocity of the bar. Then using the relative velocity equation

v, =V, j=v4i+okx(- L cos f — Lsin 6j)
v,j=(v, + Losin 0)i— Lo cos b

From the x component of the above equation
vy=—Lsinfw

The velocity of the mass center of the bar is

v=—La)sin6i+a)kx(—§cos6i—§sin Oj)

17=—£a)sin6i+—£a)cos6j
2 2

L
v|=Lw
2

Let position 2 refer to the position of the system when the angular velocity is a maximum.
Energy is conserved between position 1 and position 2.

I, +V=T,+V,
i y 1 s 1 11 ! (LY
kSl =mg=+=k,(5 —yY +=k (L—,/Lf— 2 )+——mL2a)2+—m =ANE
59 g221(1y) 5 Yy > 5 5 (3)
Oz[m%+k161jy+ék1y2+§k2(2L2—y2+2L1/L2—y2 )+émL2a)2

The above equation could be expressed as
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1
TzzgmLza)sz, -V,

Thus the maximum angular velocity occurs when V-V, is maximized. To this end

d mg k,Ly

— WV, -V,)=0=k,6, —=+k, -k, )y - ——=
dy( 1 2) 171 2 (2 ]) Lz_yz
1000y _

w/]—yz

A trial and error solution of the above equation reveals that the maximum angular velocity
occurs for y =0.0051 m. Then from eq. (3),

6.114—-200y— 0

=034
S

Problem 1.28 illustrates application of conservation of energy to a rigid body system.

1.29 Let x be the displacement of the left end of the bar of the system in Figure P1.29. Let
0 represent the clockwise angular rotation of the bar. (a) Express the kinetic energy of the

system at an arbitrary instant in terms of % and 6. (b) Express the potential energy of an
arbitrary instant in terms of x and 6. .

|_- _4. _1 Fi1)

Given: x and 6 as generalized coordinates ; .
Find: (a) T (b) V

Solution: (a) The kinetic energy of a rigid body is

T =Lmp?+ 110’
2 2

The angular velocity of the bar is @ = 6 . The displacement of the mass center in terms of
the chosen generalized coordinates is

L .
X=x+—sinf
2

Thus the velocity of the mass center is
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: L -
X=x+—06cosl
2
Hence the kinetic energy of the system at an arbitrary instant is
1 L 1.
T=—m|x+—=0cosf | +—16"
2 2 2
If the small-angle assumption is used the kinetic energy of the linearized system is
2
T=tmi? s lmpeo s Y mE 4102
2 2 2 4
(b) The potential energy is due to the springs and is
V= 1k 2+1k< +3L92>
IR R

Problem 1.29 illustrates the evaluation of the kinetic energy and potential energy of a rigid
body at an arbitrary instant in terms of chosen generalized coordinates.

1.30 Repeat problem 1.29 using coordinates x;, which is the displacement of the mass
center, and x,, which is the displacement of the point of attachment of the spring that is a
distance 3L/4 from the left end.

|_- L4. _1 F(t)

Given: x; and x, as generalized coordinates. ' NG P
Find: (a) T (b) V Tk k

Solution: The kinetic energy of the bar at an
arbitrary instant is

1 1 /4. 71
T =gmit +51|(7) e - )

The potential energy of the bar at an arbitrary instant is

1 1
V= Ek(BXZ - le)z + EkXZZ

Problem 1.30 illustrates the evaluation of the kinetic and potential energy of a rigid body at
an arbitrary instant in terms of chosen generalized coordinates.

42

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Chapter 1: Introduction

1.31 Let @ represent the clockwise angular displacement of the pulley system in Figure
P1.31 from the system’s equilibrium position.

(a) Express the potential energy of the k
system at an arbitrary instant in terms of 6. W

(b) Express the kinetic energy of the
system at an arbitrary instant in terms of 6.

2m

Given: @as generalized coordinate

Find: (@) V (b) T 2k

Solution: Consider the free-body diagram
of the system in its equilibrium position.
Summing moments about the center of the pulley

D> M. =0
—kA\r —=2kA,(2r)+2mg(2r)=0

From the geometry of the system

which when substituted into the previous equation leads to

_4mg A = 8mg

ook 2 ok

Let x; represent the displacement of the sliding block from the system’s equilibrium
position. Let x, represent the displacement of the hanging block from the system’s
equilibrium position. From geometry

x,=rf x,=2r0

(a) Choosing the equilibrium position of the system as the datum for potential energy
calculations, the potential energy at an arbitrary instant is

V= %k(xl +A)° +%2k(x2 +A,)* —2mgx,

1 dmg\’ 1 8mg )’
V=—kl r0+28 | 42k 270+ 28 —2mgx,
2 9k 2 Ok

Simplification leads to
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2
V=210’ +§(Ej
2 ol &

(b) The kinetic energy of the system at an arbitrary instant is

1 1 ., 1
T=—mi|+—1 0% +—2mx;
2 27 2

1

. 1, 1
T=—m@r6)y +=160°+
S0y +=-1,

—2m(2r6)?
2M(r)

1 .
T = 5(9mr2+1p )6?

Problem 1.31 illustrates the calculation of a potential and kinetic energy of a system of
rigid bodies at an arbitrary instant in terms of a chosen generalized coordinate.

1.32 A 20 ton railroad car is coupled to a 15 ton car by moving the 20 ton car at 5 mph
toward the stationary 15 ton car. (a) What is the resulting speed of the two-car coupling?
(b) What would the resulting speed be if the 15 ton car is moving at 5 mph toward a
stationary 20 ton car?

Given: W;=40000 Ib, W, = 30000 Ib, vi=5 mph
Find: v,

Solution: (a) Consider the impulse and momentum diagrams below

Wy
g v
Wy
SYSTEM MOMENTA SYSTEM EXTERNAL
BEFORE COUPLING IMPULSES DURING

COUPLING

Wy W>
g g

. -

SYSTEM MOMENTA
AFTER COUPLING

There are no external impulses acting on the two car system during coupling. Applying the
principle of linear impulse and linear momentum
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— V= —+—= 1V,
g g g
(A%
V, = ——
W+ W,
(400001b)(5mph)
700001b

=2.86 mph

(b) If the 15 ton car has a velocity of 5 mph the velocity of the system after coupling is

(30000 1b)(5 mph)
Y2 = 7770000 1b)

= 2.14 mph

Problem 1.32 illustrates application of the principle of linear impulse and linear
momentum to a system when linear momentum is conserved. The couplings between
railroad cars are actually elastic. Thus, after coupling the cars move relative to one another.
The two car system will move together with a rigid body motion, but relative motion will
occur. This is an example of a unrestrained system considered in Chapters 6 and 7.

1.33 The 15 kg block of Figure P1.33 is moving with a velocity of 3 m/s at # = 0 when the
force F() is applied to the block. (a) Determine the velocity of the block at # = 2 s. (b)
Determine the velocity of the block at # = 4 s. (¢c) Determine the block’s kinetic energy at ¢
=4 sec.

F(1)
i %b
Given: m = 15 kg, v, = 3 m/s, u = 0.08, F(ty ~ 7mmmm = #70%

Find: (a) v(t=2's) (b) v(t=4s)(c) T

Solution: (a) The principle of impulse and momentum is used to determine the velocity at
t=2 s. Application of the principle leads to

2
mvy + f [F(t) — umgldt = mv,
0

or substituting in given numbers yields
(15kg) (32) + 2202 s) - (0.08)(15 ke) (981 5 ) (25) = (15 kgyw
s 2 s2 2
v, = 2.76 m/s

(b) The velocity at t =4 s is determined from the principle of impulse and momentum
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4
mv,; + f [F(t) — umg]ldt = mv,
0

which upon substitution of given numbers yields

(15kg) (3 ?) +%(30 N)3s) + (30 N)(1s) — (0.08)(15 kg) (9.81 g) (45) = (15 kg)v,

v, = 4.86 m/s

(c) The kinetic energy is

1 1
T = Emvzz = 5(15 kg)(4.86 m/s)? = 177.1]

Problem 1.33 illustrates application of the principle of impulse and momentum.

Drop hammer

1.34 A 400 kg forging hammer is 5

mounted on four identical springs, each e %
of stiffness £ = 4200 N/m. During the
forging process, a 110 kg hammer, -
which is part of the machine, is dropped |

| Workpiece

from a height of 1.4 m onto an anvil, as T l | -
shown in Figure P1.34. (a) What is the |, ;Z —
resulting velocity of the entire machine :

after the hammer is dropped? (b) What i
is the maximum displacement of the

machine? 2
|

Given: m = 400 kg, k = 42000 N/m, <

mp, =110kg,h=14m

Find: (a) v (b) X0y

Solution: (a) Application of the principle of conservation of energy to the hammer as it
drops leads to the velocity of the hammer immediately before impacting the anvil

1

m m
Smv? =mgh = v = J2gh = \/2 (9.81 s_z) (14m) =524 —

Applying the principle of impulse and momentum to the hammer and anvil as the hammer
strikes leads to (assuming the hammer is part of the machine and the hammer sticks to and
moves with the machine)

mpv (110 kg)(5.24 m/s)
B 400 kg

myv = mv, = v, = =144 m/s
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(b) Application of the principle of conservation of energy between the time immediately
after impact to the time when the machine reaches its maximum displacement

1 1
Emv% = Eerznax

m 400 kg

m
Xmax = Evz = 2200 N/m N/m 1.44? =0.137m

Problem 1.34 illustrates application of the principle of impulse and momentum and the
principle of conservation of energy.

1.35 The motion of a baseball bat in a ballplayer’s hands is approximated as a rigid-body
motion about an axis through the player’s hands, as shown in Figure P1.35. The bat has a
centroidal moment of inertia /. The player’s “bat speed” is », and the velocity of the
pitched ball is v. Determine the distance from the player’s hand S -
along the bat where the batter should strike the ball to minimize the \ T
impulse felt by his/her hands. Does the distance change if the player | a b
“chokes up” on the bat, reducing the distance from G to his/her

hands? afl. ) l

Given: I, a, v, o, m
Find: b

Solution: When the bat strikes the pitched ball, the ball exerts an impulse on the bat, call it
B. Since the batter is holding the bat, he feels an impulse, call it P. The effect of the
impulse on the bat is to change the “bat speed” from ® before hitting the ball to ®, after
hitting the ball. Impulse-momentum diagrams of the bat during this time are shown below.

/S S

+ =
4 maoe 14— mao,
B _
4 4

U// 1o u / Io,
SYSTEM MOMENTA SYSTEM EXTERNAL SYSTEM MOMENTA
BEFORE STRIKING + IMPULSES DURING = AFTER STRIKING
BALL STRIKING BALL
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Applying the principle of linear impulse and linear momentum

maw+P—B=maw,

B:ma(a)—wz)+P W

Applying the principle of angular impulse and angular momentum about an axis through
the batter’s hands gives
lw+ma’w - Bb=1w, +ma’o,

B:é(l+ma2)(a)—a)2) @

Equating B from egs. (1) and (2) leads to

Note that P =0 if

I
b=a+—
ma

Problem 1.35 illustrates application of the principle of linear impulse and momentum and
angular impulse and momentum. The location where the bat should strike the ball to
minimize the impulse felt by the batter is called the center of percussion.

1.36 A playground ride has a centroidal moment of inertia of 17 slug - ft*. Three children
of weights 50 Ib, 50 Ib, and 55 Ib are on the ride, which is rotating at 60 rpm. The children
are 30 in. from the center of the ride. A father stops the ride by grabbing it with his hands.
What angular impulse is felt by the father?

Given: I =17 slugs—ftz, W, =50 1b, W, =50 1b, W3=551b, r = 20 in, ® = 60 rpm = 6.48
rad/sec

Find: J to stop the ride.

Solution: The father applies an angular impulse about the center of the ride of magnitude J
to stop the ride. Consider the impulse and momentum diagrams
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—+ =
SYSTEM MOMENTA EXTERNAL IMPULSE SYSTEM MOMENTA
BEFORE FATHER STOPS APPLIED BY FATHER AFTER FATHER STOPS
RIDE RIDE

The principle of angular impulse and angular momentum about the center of the ride is

angular momentum . angular mometum
applied angular
about Obefore |+| =| about O after
. impulse about O .
impulse impulse

fa)JrKra)(r)Jr%rco (r)+%ra) (r)—J =0

g g g

J:P+l(Wl +W, +W3)r2}a)
g

J =| 17sulgs - fi? + 122 1; (1.667ft)’ (6.48 @]
322 S

S
=197.1N-sec-m

Problem 1.36 illustrates application of the principle of angular impulse and angular
momentum.

1.37 The natural frequencies of a thermally loaded fixed-fixed beam (Figure P1.37) are a
function of the material properties of the beam, including:

E, the elastic modulus of the beam
p, the mass density of the beam
a, the coefficient of thermal expansion

The geometric properties of the beam are
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A, its cross-sectional area
1, its cross section moment of inertia
L, its length
Also,
AT, the temperature difference between the installation and loading

(a) What are the dimensions involved in each of the parameters?

(b) How many dimensionless parameters does the Buckingham Pi theorem predict are
in the non-dimensional formulation of the relation between the natural frequencies
and the other parameters?

(c) Develop a set of dimensionless parameters.

J / E.LA P o AT L

ot

i L i

Y

Solution: (a) The dimensions of the parameters are

. 2 .M _FT? L 2 174 7. . _1
E: F/L PG =T Xy AL I.L* L: L AT: 0 Wp =7

where M represents mass, L represents length, T represents time, and ® represents
temperature.

(b) The Buckingham Pi theorem implies that there are n=m-k dimensionless parameters in
the formulation where m is the number of dimensional parameters and k is the number of
basic dimensions in those variables. There are 8 dimensional parameters and 4 basic
dimensions in the parameters which implies there are 4 nondimensional parameters.

. . Aw? aAT
(c) Dimensionless parameters are [1; = QT”, I, = - I; =—

Problem 1.37 illustrates application of the Buckingham Pi theorem.

1.38 The drag force F on a circular cylinder due to vortex shedding is a function of
U, the velocity of the flow
U, the dynamic viscosity of the fluid
p, the mass density of the fluid

L, the length of the cylinder
50
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D, the diameter of the cylinder

(a) What are the dimensions involved in each of the parameters?

(b) How many dimensionless parameters does the Buckingham Pi theorem predict are
in the non-dimensional formulation of the relation between the natural frequencies
and the other parameters?

(c) Develop a set of dimensionless parameters.

Solution: (a) Dimensions of the parameters are

L FT M _ FT?
U; ,LlL—Z ‘D'E_L_“ L:L D:L F:F

(b) The Buckingham Pi theorem implies that there are n=m-k dimensionless parameters in
the formulation where m is the number of dimensional parameters and k is the number of
basic dimensions in those variables. There are 6 dimensional parameters and 3 basic
dimensions in the parameters which implies there are 3 nondimensional parameters.

. . AL D F
(c) Dimensionless parameters are [1; = QT’ I, = o I1; = SU7a

Problem 1.38 illustrates use of the Buckingham Pi Theorem.

1.39 The principal normal stress o due to forcing of a beam with a concentrated harmonic
excitation is a function of

F,, the amplitude of loading

w, the frequency of the loading

E, the elastic modulus of the beam

p, the mass density of the beam
A, the beam’s cross-sectional area

1, the beam’s cross-sectional moment of inertia

L, the beam’s length

a, the location of the load along the axis of the beam

(a) What are the dimensions involved in each of the parameters?

(b) How many dimensionless parameters does the Buckingham Pi theorem predict are
in the non-dimensional formulation of the relation between the natural frequencies
and the other parameters?

(c) Develop a set of dimensionless parameters.

Solution: (a) Dimensions of the parameters are
51
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2 F
p:L3=L_4 EZL—Z L:L A:12 1LL? a:L O-:E
(b) The Buckingham Pi theorem implies that there are n=m-k dimensionless parameters in
the formulation where m is the number of dimensional parameters and k is the number of
basic dimensions in those variables. There are 9 dimensional parameters and 3 basic
dimensions in the parameters which implies there are 6 nondimensional parameters.

(c) Dimensionless parameters are

g

_ _a _ Fo A I _FO
H1_55H2_27H3_

4:§5H3_

plw?’ AL 6 T g2

Problem 1.39 illustrates use of the Buckingham Pi theorem.

1.40 A MEMS system is undergoing simple harmonic motion according to
x(t) = [3.15sin(2 x 10°t + 0.48) + 4.8 cos(2 x 10°¢t + 1.74)]um

(a) What is the period of motion? (b) What is the frequency of motion in Hz? (c) What
is the amplitude of motion? (d) What is the phase and does it lead or lag? (e) Plot
the displacement.

Given: x(t)

Find: (&) T (b) f () A (d) ¢

2r

Solution: (a) The periodis T = TS

31.4 us

1
31.4 us

(b) The frequency is the reciprocal of the period, f = = 3.183 x 10* Hz.

(c) The amplitude is obtained by writing the response in the form of x(t) = Asin(2 %
105#+¢@. To this end

3.1sin(2 x 10°t + 0.48) + 4.8 cos(2 x 105t + 1.74)
= 3.1[sin(2 x 10°t) cos 0.48 + cos(2 x 10°t) sin 0.48]
+ 4.8[cos(2 x 10°t) cos 1.74 — sin(2 x 10°t) sin 1.74]

= (3.1 co0s 0.48 — 4.8 sin 1.74) sin(2 x 10°t) + (3.1 sin 0.48 + 4.8 cos 1.74) cos(2 x 10°t)
= —1.9185in(2 x 10%t) + 0.6232 cos(2 x 10°t)

= 2.0774sin(2 x 105t — 0.3047)
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(d) The amplitude is 2.0774 um. The phase is -0.3047 rad and is a phase lag.

(e)

2.5

2

15

1

0.5

0

X (Hm)

-0.5

-1

-1.5

-2

2.5 | | |
0 0.2 0.4 0.6 0.8 1 12

t(s) x 10"

Problem 1.40 illustrates simple harmonic motion.

1.41 The force that causes simple harmonic motion in the mass-spring
system of Figure P1.31 is F(t) = 35sin100t N. The resulting
displacement of the mass is x(t) = 0.002 sin(30t — ) m. (a) What is
the period of the motion? (b) The amplitude of displacement is
X = %M where F; is the amplitude of the force and M is a o

dimensionless factor called the magnification factor. Calculate M. (c)
M has the form

3.5 % 10° N/m

1
M=——
|1_(w_n)

where w, is called the natural frequency. If w, < w, then ¢ = m; otherwise ¢ =
0. Calculate w,,.

35 sin 30¢

Given: F(t), x(t), k = 3.5 X 10* N/m
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Find: (a) T, (b) M, (¢) w,

21

Solution: (a) The period of motion is T = S0 = 0-2094s.
3.5%10*X)(0.002
(b) M:k_X:( x10*0)( m):2
Fo 35N
(c) Since ¢ =, w, < w and
rad
M ! :(w)z 14— =15= © 05 49"
= —_— = _—= w. —_— — R
Wn " V1.5 Y S

w 2
(o) -1
Problem 1.41 illustrates simple harmonic motion.

1.42 The displacement vector of a particle is
r(t) = [2sin20t i+ 3 cos20t j | mm

(a) Describe the trajectory of the particle. (b) How long does it take the particle to make
one circuit around the path?

Given: r(t)
Find: path of particle, t

Solution: From the given information x(t) = 2 sin 20t and y(t) = 3 cos 20t. Eliminating
t between the equations leads to

2+_2:1
X 9y

The time it takes to make one circuit around the elliptical path is

t=2"_ 0314
—20— . S

Problem 1.42 illustrates the trajectory of a particle undergoing simple harmonic motion in
x and y.
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